Chebyshevskii Sbornik
 RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Chebyshevskii Sb.: Year: Volume: Issue: Page: Find

 Chebyshevskii Sb., 2016, Volume 17, Issue 3, Pages 72–105 (Mi cheb499)

On hyperbolic Hurwitz zeta function

N. M. Dobrovolskya, N. N. Dobrovolskya, V. N. Sobolevab, D. K. Sobolevb, L. P. Dobrovol'skayac, O. E. Bocharovac

a Tula State Pedagogical University
b Moscow State Pedagogical University
c Institute of Economics and Management

Abstract: The paper deals with a new object of study — hyperbolic Hurwitz zeta function, which is given in the right $\alpha$-semiplane $\alpha = \sigma + it$, $\sigma> 1$ by the equality
$$\zeta_H(\alpha; d, b) = \sum_{m \in \mathbb Z} ( \overline{dm + b} )^{-\alpha},$$
where $d \neq0$ and $b$ — any real number.
Hyperbolic Hurwitz zeta function $\zeta_H (\alpha; d, b)$, when $\| \frac {b} {d} \|> 0$ coincides with the hyperbolic zeta function of shifted one-dimensional lattice $\zeta_H (\Lambda (d, b) | \alpha)$. The importance of this class of one-dimensional lattices is due to the fact that each Cartesian lattice is represented as a union of a finite number of Cartesian products of one-dimensional shifted lattices of the form $\Lambda (d, b) = d \mathbb{Z} + b$.
Cartesian products of one-dimensional shifted lattices are in substance shifted diagonal lattices, for which in this paper the simplest form of a functional equation for the hyperbolic zeta function of such lattices is given.
The connection of the hyperbolic Hurwitz zeta function with the Hurwitz zeta function $\zeta^* (\alpha; b)$ periodized by parameter $b$ and with the ordinary Hurwitz zeta function $\zeta (\alpha; b)$ is studied.
New integral representations for these zeta functions and an analytic continuation to the left of the line $\alpha = 1 + it$ are obtained.
All considered hyperbolic zeta functions of lattices form an important class of Dirichlet series directly related to the development of the number-theoretical method in approximate analysis. For the study of such series the use of Abel's theorem is efficient, which gives an integral representation through improper integrals. Integration by parts of these improper integrals leads to improper integrals with Bernoulli polynomials, which are also studied in this paper.
Bibliography: 34 titles.

Keywords: Hurwitz zeta function, periodised Hurwitz zeta function, Hurwitz zeta function of the second kind, hyperbolic Hurwitz zeta function, lattice, hyperbolic zeta function of lattice, zeta function of lattice, Bernoulli polynomials, Hankel contour.

 Funding Agency Grant Number Russian Foundation for Basic Research 15-01-01540_а15-41-03263_р_центр_а

Full text: PDF file (769 kB)
References: PDF file   HTML file
UDC: 511.9
Accepted:12.09.2016

Citation: N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sb., 17:3 (2016), 72–105

Citation in format AMSBIB
\Bibitem{DobDobSob16} \by N.~M.~Dobrovolsky, N.~N.~Dobrovolsky, V.~N.~Soboleva, D.~K.~Sobolev, L.~P.~Dobrovol'skaya, O.~E.~Bocharova \paper On hyperbolic Hurwitz zeta function \jour Chebyshevskii Sb. \yr 2016 \vol 17 \issue 3 \pages 72--105 \mathnet{http://mi.mathnet.ru/cheb499} \elib{https://elibrary.ru/item.asp?id=27452084} 

• http://mi.mathnet.ru/eng/cheb499
• http://mi.mathnet.ru/eng/cheb/v17/i3/p72

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85
2. N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 188–208
3. N. N. Dobrovolskii, “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105
4. N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Gipoteza o "zagraditelnom ryade" dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123
5. N. N. Dobrovolskii, A. O. Kalinina, M. N. Dobrovolskii, N. M. Dobrovolskii, “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevskii sb., 19:2 (2018), 123–141
6. N. N. Dobrovolskii, “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150
7. I. Yu. Rebrova, A. V. Kirilina, “N. M. Korobov i teoriya giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 19:2 (2018), 341–367
8. N. N. Dobrovolskii, A. O. Kalinina, M. N. Dobrovolskii, N. M. Dobrovolskii, “O monoide kvadratichnykh vychetov”, Chebyshevskii sb., 19:3 (2018), 95–108
9. N. N. Dobrovolskii, “O dvukh asimptoticheskikh formulakh v teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 19:3 (2018), 109–134
•  Number of views: This page: 225 Full text: 69 References: 33