|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
О гиперболической дзета-функции Гурвица
Н. М. Добровольскийa, Н. Н. Добровольскийa, В. Н. Соболеваb, Д. К. Соболевb, Л. П. Добровольскаяc, О. Е. Бочароваc a Тульский государственный педагогический университет им. Л. Н. Толстого
b Московский педагогический государственный университет
c Институт экономики и управления
Аннотация:
В работе рассматривается новый объект исследования — гиперболическая дзета-функция Гурвица, которая задается в правой $\alpha$-полуплоскости $\alpha=\sigma+it$, $\sigma>1$ равенством
$$
\zeta_H(\alpha;d,b)=\sum_{m\in\mathbb Z}( \overline{dm+b} )^{-\alpha},
$$
где $d\neq0$ и $b$ — любое вещественное число.
Гиперболическая дзета-функция Гурвица $\zeta_H(\alpha;d,b)$ при $\|\frac{b}{d}\|>0$ совпадает с гиперболической дзета-функцией сдвинутой одномерной решеткой $\zeta_H(\Lambda(d,b)|\alpha)$. Важность этого класса одномерных решёток обусловлена тем, что каждая декартова решётка представляется объединением конечного числа декартовых произведений одномерных сдвинутых решёток вида $\Lambda(d,b)=d\mathbb{Z}+b$.
Декартовы произведения одномерных сдвинутых решёток — это суть сдвинутые диагональные решётки, для которых в данной работе удается дать наиболее простой вид функционального уравнения для гиперболической дзета-функции этих решёток.
Изучается связь гиперболической дзета-функции Гурвица с периодизированной по параметру $b$ дзета-функцией Гурвица $\zeta^*(\alpha;b)$ и с обычной дзета-функцией Гурвица $\zeta(\alpha;b)$.
Получены новые интегральные представления для этих дзета-функций и аналитическое продолжение слева от прямой $\alpha=1+it$.
Все рассматриваемые гиперболические дзета-функции решёток образуют важный класс рядов Дирихле, непосредственно связанный с развитием теоретико-числового метода в приближенном анализе. Для исследования таких рядов эффективным является применение теоремы Абеля, дающей интегральное представление через несобственные интегралы. Интегрирование по частям этих несобственных интегралов приводят к несобственным интегралам с полиномами Бернулли, которые также исследуются в данной работе.
Библиография: 34 названия.
Ключевые слова:
дзета-функция Гурвица, периодизированная дзета-функция Гурвица, дзета-функция Гурвица второго рода, гиперболическая дзета-функция Гурвица, решётка, гиперболическая дзета-функция решётки, дзета-функция решётки, полиномы Бернулли, контур Ханкеля.
Полный текст:
PDF файл (769 kB)
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
Тип публикации:
Статья
УДК:
511.9 Поступила в редакцию: 02.05.2016 Принята в печать:12.09.2016
Образец цитирования:
Н. М. Добровольский, Н. Н. Добровольский, В. Н. Соболева, Д. К. Соболев, Л. П. Добровольская, О. Е. Бочарова, “О гиперболической дзета-функции Гурвица”, Чебышевский сб., 17:3 (2016), 72–105
Цитирование в формате AMSBIB
\RBibitem{DobDobSob16}
\by Н.~М.~Добровольский, Н.~Н.~Добровольский, В.~Н.~Соболева, Д.~К.~Соболев, Л.~П.~Добровольская, О.~Е.~Бочарова
\paper О гиперболической дзета-функции Гурвица
\jour Чебышевский сб.
\yr 2016
\vol 17
\issue 3
\pages 72--105
\mathnet{http://mi.mathnet.ru/cheb499}
\elib{https://elibrary.ru/item.asp?id=27452084}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/cheb499 http://mi.mathnet.ru/rus/cheb/v17/i3/p72
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
С. С. Демидов, Е. А. Морозова, В. Н. Чубариков, И. Ю. Реброва, И. Н. Балаба, Н. Н. Добровольский, Н. М. Добровольский, Л. П. Добровольская, А. В. Родионов, О. А. Пихтилькова, “Теоретико-числовой метод в приближенном анализе”, Чебышевский сб., 18:4 (2017), 6–85
-
Н. Н. Добровольский, “Дзета-функция моноидов натуральных чисел с однозначным разложением на простые множители”, Чебышевский сб., 18:4 (2017), 188–208
-
Н. Н. Добровольский, “О моноидах натуральных чисел с однозначным разложением на простые элементы”, Чебышевский сб., 19:1 (2018), 79–105
-
Н. Н. Добровольский, М. Н. Добровольский, Н. М. Добровольский, И. Н. Балаба, И. Ю. Реброва, “Гипотеза о "заградительном ряде" для дзета-функций моноидов с экспоненциальной последовательностью простых”, Чебышевский сб., 19:1 (2018), 106–123
-
Н. Н. Добровольский, А. О. Калинина, М. Н. Добровольский, Н. М. Добровольский, “О количестве простых элементов в некоторых моноидах натуральных чисел”, Чебышевский сб., 19:2 (2018), 123–141
-
Н. Н. Добровольский, “Дзета-функция моноидов с заданной абсциссой абсолютной сходимости”, Чебышевский сб., 19:2 (2018), 142–150
-
И. Ю. Реброва, А. В. Кирилина, “Н. М. Коробов и теория гиперболической дзета-функции решёток”, Чебышевский сб., 19:2 (2018), 341–367
-
Н. Н. Добровольский, А. О. Калинина, М. Н. Добровольский, Н. М. Добровольский, “О моноиде квадратичных вычетов”, Чебышевский сб., 19:3 (2018), 95–108
-
Н. Н. Добровольский, “О двух асимптотических формулах в теории гиперболической дзета-функции решёток”, Чебышевский сб., 19:3 (2018), 109–134
|
Просмотров: |
Эта страница: | 186 | Полный текст: | 55 | Литература: | 30 |
|