Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2016, Volume 17, Issue 3, Pages 178–185 (Mi cheb505)  

This article is cited in 3 scientific papers (total in 3 papers)

On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$

V. V. Nosov

Orenburg State University

Abstract: Let $\Gamma$ be a strongly regular graph with parameters $(v,k,0,2)$. Then $k=u^2+1$, $v=(u^4+3u^2+4)/2$ and $u \equiv 1, 2, 3(mod 4)$. If $u=1$, then $\Gamma$ has parametrs $(4,2,0,2)$ — tetragonal graph. If $u=2$, then $\Gamma$ has parametrs $(15,5,0,2)$ — Clebsch graph. If $u=3$, then $\Gamma$ has parametrs $(56,10,0,2)$ — Gewirtz graph. If $u=5$ then hypothetical strongly regular graph$\Gamma$ has parametrs $(352,26,0,2)$ [4]. If $u=5$ then hypothetical strongly regular graph$\Gamma$ has parametrs $(704,37,0,2)$ [5]. Let $u=7$, then $\Gamma$ has parametrs $(1276,50,0,2)$. Let $G$ be the automorphism group of a hypothetical strongly regular graph with parameters $(1276, 50, 0, 2)$. Possible orders are found and the structure of fixed-point subgraphs is determined for elements of prime order in $G$. With the use of theory of characters of finite groups we find the possible orders and the structures of subgraphs of the fixed points of automorphisms of the graph with parameters $(1276,50,0,2)$. It proved that if the graph with parametrs $(1276,50,0,2)$ exist, its automorphism group divides $2^l\cdot 3\cdot 5^m\cdot 7\cdot 11\cdot 29$. In particulary, $G$ — solvable group.
Bibliography: 17 titles.

Keywords: strongly regular graph, prime order automorphisms of strongly regular graph, fixed-point subgraphs.

Full text: PDF file (508 kB)
References: PDF file   HTML file
UDC: 519.17+512.54
Received: 19.05.2016
Accepted:13.09.2016

Citation: V. V. Nosov, “On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$”, Chebyshevskii Sb., 17:3 (2016), 178–185

Citation in format AMSBIB
\Bibitem{Nos16}
\by V.~V.~Nosov
\paper On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 3
\pages 178--185
\mathnet{http://mi.mathnet.ru/cheb505}
\elib{https://elibrary.ru/item.asp?id=27452090}


Linking options:
  • http://mi.mathnet.ru/eng/cheb505
  • http://mi.mathnet.ru/eng/cheb/v17/i3/p178

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Chirskii, “Periodicheskie i neperiodicheskie konechnye posledovatelnosti”, Chebyshevskii sb., 18:2 (2017), 275–278  mathnet  crossref  elib
    2. E. S. Krupitsyn, “Otsenka mnogochlena ot globalno transtsendentnogo poliadicheskogo chisla”, Chebyshevskii sb., 18:4 (2017), 256–260  mathnet  crossref  elib
    3. A. Kh. Munos Vaskes, “O $q$-ichnykh periodicheskikh posledovatelnostyakh”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva. Moskva, 22–25 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 34–36  mathnet  crossref
  • Number of views:
    This page:112
    Full text:45
    References:19

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022