Chebyshevskii Sbornik
General information
Latest issue

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Chebyshevskii Sb.:

Personal entry:
Save password
Forgotten password?

Chebyshevskii Sb., 2016, Volume 17, Issue 4, Pages 23–50 (Mi cheb514)  

This article is cited in 2 scientific papers (total in 2 papers)

On algorithmic problems in Coxeter groups

V. N. Bezverkhniiab, N. B. Bezverkhnyayaab, I. V. Dobryninaab, O. V. Inchenkoab, A. E. Ustyanab

a Tula State University
b Tula State Pedagogical University

Abstract: The main algorithmic problems of group theory posed by M. Dehn are the problem of words, the problem of the conjugation of words for finitely presented groups, and the group's isomorphism problem.
Among the works related to the study of the M. Dehn's problems, the most outstanding ones are the work of P. S. Novikov who proved the undecidability of the problem of words and the conjugacy problem for finitely presented groups as well as the undecidability of the problem of isomorphism of groups. In this regard, the main algorithmic problems and their various generalizations are studied in certain classes of groups.
Coxeter groups were introduced by H. S. M. Coxeter: every reflection group is a Coxeter group if its generating elements are reflections with respect to hyperplanes limiting its fundamental polyhedron. H. S. M. Coxeter listed all the reflection groups in three-dimensional Euclidean space and proved that they are all Coxeter groups and every finite Coxeter group is isomorphic to some reflection group in the three-dimensional Euclidean space which elements have a common fixed point.
In an algebraic aspect Coxeter groups are studied starting with works by J. Tits who solved the problem of words in certain Coxeter groups.
The article describes the known results obtained in solving algorithmic problems in Coxeter groups; the main purpose of the paper is to analyze of the results of solving algorithmic problems in Coxeter groups that were obtained by members of the Tula algebraic school “Algorithmic problems of theory of the groups and semigroups” under the supervision of V. N. Bezverkhnii.
It reviews assertions and theorems proved by the authors of the article for the various classes of Coxeter groups: Coxeter groups of large and extra-large types, Coxeter groups with a tree-structure, and Coxeter groups with $n$-angled structure.
The basic approaches and methods of evidence among which the method of diagrams worked out by van Kampen, reopened by R. Lindon and refined by V. N. Bezverkhnii concerning the introduction of R-cancellations, special $R$-cancellations, special ring cancellations as well as method of graphs, method of types worked out by V. N. Bezverkhnii, method of special set of words designed by V. N. Bezverkhnii on the basis of the generalization of Nielsen method for free construction of groups.
Classes of group considered in the article include all Coxeter groups which may be represented as generalized tree structures of Coxeter groups formed from Coxeter groups with tree structure with replacing some vertices of the corresponding tree-graph by Coxeter groups of large or extra-large types as well as Coxeter groups with $n$-angled structure.

Keywords: Coxeter group, algorithmic problems, diagrams.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-41-03222_р_центр_а


Full text: PDF file (687 kB)
References: PDF file   HTML file

UDC: 519.4
Received: 14.09.2016

Citation: V. N. Bezverkhnii, N. B. Bezverkhnyaya, I. V. Dobrynina, O. V. Inchenko, A. E. Ustyan, “On algorithmic problems in Coxeter groups”, Chebyshevskii Sb., 17:4 (2016), 23–50

Citation in format AMSBIB
\by V.~N.~Bezverkhnii, N.~B.~Bezverkhnyaya, I.~V.~Dobrynina, O.~V.~Inchenko, A.~E.~Ustyan
\paper On algorithmic problems in Coxeter groups
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 4
\pages 23--50

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Dobrynina, “Ob algoritmicheskikh problemakh v obobschennykh drevesnykh strukturakh grupp Kokstera”, Chebyshevskii sb., 19:2 (2018), 477–490  mathnet  crossref  elib
    2. V. N. Bezverkhnii, I. V. Dobrynina, “O probleme obobschennoi sopryazhennosti slov v obobschennykh drevesnykh strukturakh grupp Kokstera”, Chebyshevskii sb., 19:3 (2018), 135–147  mathnet  crossref  elib
  • Number of views:
    This page:175
    Full text:69

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021