General information
Latest issue

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Chebyshevskii Sb.:

Personal entry:
Save password
Forgotten password?

Chebyshevskii Sb., 2016, Volume 17, Issue 4, Pages 79–109 (Mi cheb518)  

This article is cited in 6 scientific papers (total in 6 papers)

Methods of estimating of incomplete Kloosterman sums

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: This survey contains enlarged version of a mini-course which was read by the author in November 2015 during “Chinese - Russian workshop of exponential sums and sumsets”. This workshop was organized by professors Chaohua Jia (Institute of Mathematics, Academia Sinica) and Ke Gong (Henan University) in Academy of Mathematics and System Science, CAS (Beijing). The author is warmly grateful to them for the support and hospitality.
The survey contains the Introduction, three parts and Conclusion. The basic definitions and results concerning the complete Kloosterman sums are given in the Introduction.
The method of estimating of incomplete Kloosterman sums to moduli equal to the raising power of a fixed prime is described in the first part. This method is based on one idea of A. G. Postnikov which reduces the estimate of such sums to the estimate of the exponential sums with polynomial by I. M. Vinogradov's mean value theorem.
A. A. Karatsuba's method of estimating of incomplete sums to an arbitrary moduli is described in the second part. This method is based on a very precise estimate of the number of solutions of one symmetric congruence involving inverse residues to a given modulus. This estimate plays the same role in thie problems under considering as Vinogradov's mean value theorem in the estimating of corresponding exponential sums.
The method of J. Bourgain and M. Z. Garaev is described in the third part. This method is based on very deep “sum-product estimate” and on the improvement of A. A. Karatsuba's bound for the number of solutions of symmetric congruence.
The Conclusion contains a series of recent results concerning the estimates of short Kloosterman sums.
Bibliography: 57 titles.

Keywords: inverse residues, incomplete Kloosterman sums, method of Postnikov, method of Karatsuba, method of Bourgain and Garaev, Vinogradov's mean value theorem, sum-product estimate.

Funding Agency Grant Number
Russian Science Foundation 14-11-00433


Full text: PDF file (748 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 511.321
Received: 22.04.2016

Citation: M. A. Korolev, “Methods of estimating of incomplete Kloosterman sums”, Chebyshevskii Sb., 17:4 (2016), 79–109

Citation in format AMSBIB
\by M.~A.~Korolev
\paper Methods of estimating of incomplete Kloosterman sums
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 4
\pages 79--109

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Korolev, “On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s”, Proc. Steklov Inst. Math., 299 (2017), 1–43  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. M. A. Korolev, “Kloosterman sums with multiplicative coefficients”, Izv. Math., 82:4 (2018), 647–661  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. M. A. Korolev, “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. M. A. Korolev, “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170  mathnet  crossref  crossref  mathscinet  isi  elib
    6. M. A. Korolev, “Short Kloosterman Sums with Primes”, Math. Notes, 106:1 (2019), 89–97  mathnet  crossref  crossref  mathscinet  isi  elib
  • Number of views:
    This page:248
    Full text:67

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020