RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2017, Volume 18, Issue 2, Pages 98–128 (Mi cheb545)  

This article is cited in 3 scientific papers (total in 3 papers)

Classification purely real algebraic irrationalities

N. M. Dobrovol'skiiab, N. N. Dobrovol'skiiab, D. K. Sobolevc, V. N. Sobolevac

a Tula State University
b Tula State Pedagogical University
c Moscow State Pedagogical University

Abstract: We study the appearance and properties of minimal residual fractions of polynomials in the decomposition of algebraic numbers into continued fractions.
It is shown that for purely real algebraic irrationalities $\alpha$ of degree $n\ge2$, starting from some number $m_0=m_0(\alpha)$, the sequence of residual fractions $\alpha_m$ is a sequence of given algebraic irrationalities.
The definition of the generalized number of Piso, which differs from the definition of numbers he's also the lack of any requirement of integrality.
It is shown that for arbitrary real algebraic irrationals $\alpha$ of degree $n\ge2$, starting from some number $m_0=m_0(\alpha)$, the sequence of residual fractions $\alpha_m$ is a sequence of generalized numbers Piso.
Found an asymptotic formula for the conjugate number to the residual fractions of generalized numbers Piso. From this formula it follows that associated to the residual fraction $\alpha_m$ are concentrated about fractions $-\frac{Q_{m-2}}{Q_{m-1}}$ is either in the interval of radius $O(\frac1{Q_{m-1}^2})$ in the case of purely real algebraic irrationals, or in circles with the same radius in the General case of real algebraic irrationals, which have complex conjugate of a number.
It is established that, starting from some number $m_0=m_0(\alpha)$, fair recurrent formula for incomplete private $q_m$ expansions of real algebraic irrationals $\alpha$, Express $q_m$ using the values of the minimal polynomial $f_{m-1}(x)$ for residual fractions $\alpha_{m-1}$ and its derivative at the point $q_{m-1}$.
Found recursive formula for finding the minimal polynomials of the residual fractions using fractional-linear transformations.   Composition   this   fractional-linear transformation is a fractional-linear transformation that takes the system conjugate to an algebraic irrationality of $\alpha$ in the system of associated to the residual fraction, with a pronounced effect of concentration about rational fraction $-\frac{Q_{m-2}}{Q_{m-1}}$.
It is established that the sequence of minimal polynomials for the residual fractions is a sequence of polynomials with equal discriminantly.
In conclusion, the problem of the rational structure of a conjugate of the spectrum of a real algebraic irrational number $\alpha$ and its limit points.
Bibliography: 28 titles.

Keywords: minimal polynomial, given an algebraic irrationality, generalized number Piso, residual fractions, continued fractions.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-01540_a


DOI: https://doi.org/10.22405/2226-8383-2017-18-2-98-128

Full text: PDF file (758 kB)
References: PDF file   HTML file

UDC: 511.3
Received: 02.03.2017
Accepted:12.06.2017

Citation: N. M. Dobrovol'skii, N. N. Dobrovol'skii, D. K. Sobolev, V. N. Soboleva, “Classification purely real algebraic irrationalities”, Chebyshevskii Sb., 18:2 (2017), 98–128

Citation in format AMSBIB
\Bibitem{DobDobSob17}
\by N.~M.~Dobrovol'skii, N.~N.~Dobrovol'skii, D.~K.~Sobolev, V.~N.~Soboleva
\paper Classification purely real algebraic irrationalities
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 2
\pages 98--128
\mathnet{http://mi.mathnet.ru/cheb545}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-2-98-128}
\elib{http://elibrary.ru/item.asp?id=30042542}


Linking options:
  • http://mi.mathnet.ru/eng/cheb545
  • http://mi.mathnet.ru/eng/cheb/v18/i2/p98

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, N. N. Dobrovolskii, E. A. Matveeva, “O drobno-lineinykh preobrazovaniyakh form A. Tue–M. N. Dobrovolskogo–V. D. Podsypanina”, Chebyshevskii sb., 18:2 (2017), 54–97  mathnet  crossref  elib
    2. S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85  mathnet  crossref  elib
    3. I. Yu. Rebrova, A. V. Kirilina, “N. M. Korobov i teoriya giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 19:2 (2018), 341–367  mathnet  crossref  elib
  • Number of views:
    This page:182
    Full text:55
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020