RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сб., 2017, том 18, выпуск 2, страницы 34–53 (Mi cheb563)  

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Некоторые экстремальные задачи для преобразования Фурье по собственным функциям оператора Штурма–Лиувилля

Д. В. Горбачев, В. И. Иванов

Тульский государственный университет

Аннотация: Экстремальные задачи Турана, Фейера, Дельсарта, Бомана и Логана для положительно определенных функций в евклидовом пространстве или для функций с неотрицательным преобразованием Фурье имеют многообразные приложения в теории функций, теории приближений, теории вероятностей и метрической геометрии. Так как экстремальные функции в них являются радиальными, то с помощью усреднения по евклидовой сфере они допускают редукцию к аналогичным задачам для преобразования Ганкеля на полупрямой, для решения которых можно использовать квадратурные формулы Гаусса и Маркова на полупрямой по нулям функции Бесселя, построенные Фрапье и Оливером.
Нормированная функция Бесселя, как ядро преобразования Ганкеля, является решением задачи Штурма–Лиувилля со степенным весом. Другим важным примером служит преобразование Якоби, ядро которого является решением задачи Штурма–Лиувилля с гиперболическим весом. Авторам работы недавно удалось построить квадратурные формулы Гаусса и Маркова на полупрямой по нулям собственных функций задачи Штурма–Лиувилля при естественных условиях на весовую функцию, которые, в частности, выполняются для степенного и гиперболического весов.
При этих условиях на весовую функцию в работе решены экстремальные задачи Турана, Фейера, Дельсарта, Бомана, Логана для преобразования Фурье по собственным функциям задачи Штурма–Лиувилля. Построены экстремальные функции. Для задач Турана, Фейера, Бомана и Логана доказана их единственность.
Библиография: 44 названия.

Ключевые слова: Задача Штурма–Лиувилля на полупрямой, преобразование Фурье, экстремальные задачи Турана, Фейера, Дельсарта, Бомана, Логана, квадратурные формулы Гаусса и Маркова.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 16-01-00308_а
Работа выполнена по грантам РФФИ № 16-01-00308.


DOI: https://doi.org/10.22405/2226-8383-2017-18-2-34-53

Полный текст: PDF файл (627 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.5
Поступила в редакцию: 12.03.2017
Принята в печать:12.06.2017

Образец цитирования: Д. В. Горбачев, В. И. Иванов, “Некоторые экстремальные задачи для преобразования Фурье по собственным функциям оператора Штурма–Лиувилля”, Чебышевский сб., 18:2 (2017), 34–53

Цитирование в формате AMSBIB
\RBibitem{GorIva17}
\by Д.~В.~Горбачев, В.~И.~Иванов
\paper Некоторые экстремальные задачи для преобразования Фурье по~собственным функциям оператора Штурма--Лиувилля
\jour Чебышевский сб.
\yr 2017
\vol 18
\issue 2
\pages 34--53
\mathnet{http://mi.mathnet.ru/cheb563}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-2-34-53}
\elib{http://elibrary.ru/item.asp?id=30042540}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cheb563
  • http://mi.mathnet.ru/rus/cheb/v18/i2/p34

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Д. В. Горбачев, В. И. Иванов, Е. П. Офицеров, О. И. Смирнов, “Некоторые экстремальные задачи гармонического анализа и теории приближений”, Чебышевский сб., 18:4 (2017), 140–167  mathnet  crossref
    2. Д. В. Горбачев, В. И. Иванов, Е. П. Офицеров, О. И. Смирнов, “Вторая экстремальная задача Логана для преобразования Фурье по собственным функциям оператора Штурма–Лиувилля”, Чебышевский сб., 19:1 (2018), 57–78  mathnet  crossref  elib
    3. Д. В. Горбачев, В. И. Иванов, “Экстремальные задачи Турана, Фейера, Бомана для многомерного преобразования Фурье по собственным функциям задачи Штурма–Лиувилля”, Матем. сб., 210:6 (2019), 56–81  mathnet  crossref
  • Просмотров:
    Эта страница:230
    Полный текст:65
    Литература:25
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019