RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2017, Volume 18, Issue 4, Pages 256–260 (Mi cheb609)  

Estimates of polynomials in a liouvillean polyadic integer

E. S. Krupitsyn

Moscow State Pedagogical University

Abstract: Let
$$ \alpha=\sum\limits_{n=0}^\infty a_kn_k!, \quad a_k\in\mathbb{Z}, \quad 0\leqslant a_k\leqslant n_k, $$
with a rapidly growing sequence $n_k$ of positive integers. This series converges in all $p$-adic fields $\mathbb{Q}_p$ so it is a polyadic number.
The ring of polyadic integers is a direct product of the rings $\mathbb{Z}_p$ of $p$-adic integers over all prime numbers $p$.
So $\alpha$ can be considered as the vector $(\alpha^{(1)}, \ldots, \alpha^{(n)}, \ldots)$ with coordinates equal to the sums $\alpha^{(n)}$ of the series $\alpha$ in the field $\mathbb{Q}_{p_n}$ for the $n$-th prime $p_n$.
For any nonzero polynomial $P(x)$ with integer coefficients one has
$$ P(\alpha)=(P(\alpha^{(1)}), \ldots, P(\alpha^{(n)}), \ldots ). $$

The polyadic integer $\alpha$ is called transcendental, if for any nonzero polynomial $P(x)$ with rational integer coefficients there exist a prime $p^{(n)}$ with $P(\alpha^{(n)})\neq 0$ in $p_n$.
The polyadic integer is infinitely transcendental if there exist infinitely many primes $p_n$ such that $P(\alpha^{(n)})\neq 0$ in $\mathbb{Q}_{p_n}$ and it is called globally transcendental, if $P(\alpha^{(n)})\neq 0$ for any $n$.
The paper presents estimates from below of $|P(\alpha^{(n)})|_{p_n}$ in any $\mathbb{Q}_{p_n}$. As a corollary we get the global transcendence of $\alpha$.

Keywords: polyadic integer, estimates of polynomials.

DOI: https://doi.org/10.22405/2226-8383-2017-18-4-255-259

Full text: PDF file (602 kB)
References: PDF file   HTML file

UDC: 517
Received: 14.09.2017
Accepted:15.12.2017

Citation: E. S. Krupitsyn, “Estimates of polynomials in a liouvillean polyadic integer”, Chebyshevskii Sb., 18:4 (2017), 256–260

Citation in format AMSBIB
\Bibitem{Kru17}
\by E.~S.~Krupitsyn
\paper Estimates of polynomials in a liouvillean polyadic integer
\jour Chebyshevskii Sb.
\yr 2017
\vol 18
\issue 4
\pages 256--260
\mathnet{http://mi.mathnet.ru/cheb609}
\crossref{https://doi.org/10.22405/2226-8383-2017-18-4-255-259}
\elib{http://elibrary.ru/item.asp?id=30042558}


Linking options:
  • http://mi.mathnet.ru/eng/cheb609
  • http://mi.mathnet.ru/eng/cheb/v18/i4/p256

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:30
    Full text:8
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019