  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Chebyshevskii Sb.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Chebyshevskii Sb., 2017, Volume 18, Issue 4, Pages 256–260 (Mi cheb609)  Estimates of polynomials in a liouvillean polyadic integer

E. S. Krupitsyn

Moscow State Pedagogical University

Abstract: Let
$$\alpha=\sum\limits_{n=0}^\infty a_kn_k!, \quad a_k\in\mathbb{Z}, \quad 0\leqslant a_k\leqslant n_k,$$
with a rapidly growing sequence $n_k$ of positive integers. This series converges in all $p$-adic fields $\mathbb{Q}_p$ so it is a polyadic number.
The ring of polyadic integers is a direct product of the rings $\mathbb{Z}_p$ of $p$-adic integers over all prime numbers $p$.
So $\alpha$ can be considered as the vector $(\alpha^{(1)}, \ldots, \alpha^{(n)}, \ldots)$ with coordinates equal to the sums $\alpha^{(n)}$ of the series $\alpha$ in the field $\mathbb{Q}_{p_n}$ for the $n$-th prime $p_n$.
For any nonzero polynomial $P(x)$ with integer coefficients one has
$$P(\alpha)=(P(\alpha^{(1)}), \ldots, P(\alpha^{(n)}), \ldots ).$$

The polyadic integer $\alpha$ is called transcendental, if for any nonzero polynomial $P(x)$ with rational integer coefficients there exist a prime $p^{(n)}$ with $P(\alpha^{(n)})\neq 0$ in $p_n$.
The polyadic integer is infinitely transcendental if there exist infinitely many primes $p_n$ such that $P(\alpha^{(n)})\neq 0$ in $\mathbb{Q}_{p_n}$ and it is called globally transcendental, if $P(\alpha^{(n)})\neq 0$ for any $n$.
The paper presents estimates from below of $|P(\alpha^{(n)})|_{p_n}$ in any $\mathbb{Q}_{p_n}$. As a corollary we get the global transcendence of $\alpha$.

Keywords: polyadic integer, estimates of polynomials.

DOI: https://doi.org/10.22405/2226-8383-2017-18-4-255-259  Full text: PDF file (602 kB) References: PDF file   HTML file

UDC: 517
Accepted:15.12.2017

Citation: E. S. Krupitsyn, “Estimates of polynomials in a liouvillean polyadic integer”, Chebyshevskii Sb., 18:4 (2017), 256–260 Citation in format AMSBIB
\Bibitem{Kru17} \by E.~S.~Krupitsyn \paper Estimates of polynomials in a liouvillean polyadic integer \jour Chebyshevskii Sb. \yr 2017 \vol 18 \issue 4 \pages 256--260 \mathnet{http://mi.mathnet.ru/cheb609} \crossref{https://doi.org/10.22405/2226-8383-2017-18-4-255-259} \elib{http://elibrary.ru/item.asp?id=30042558} 

 SHARE:       Contact us: math-net2020_01 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020