RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сб., 2018, том 19, выпуск 2, страницы 123–141 (Mi cheb644)  

О количестве простых элементов в некоторых моноидах натуральных чисел

Н. Н. Добровольскийa, А. О. Калининаb, М. Н. Добровольскийc, Н. М. Добровольскийd

a Тульский государственный университет
b Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
c Геофизический центр РАН, г. Москва
d Тульский государственный педагогический университет им. Л. Н. Толстого

Аннотация: В работе исследуется вопрос о числе простых элементов в моноиде $M_{q,1}$, состоящем из натуральных чисел сравнимых с $1$ по модулю $q$. При $q>2$ моноид $M_{q,1}$ не является моноидом с однозначным разложением на простые элементы, так как наряду с обычными простыми числами, которые сравнимы с $1$ по модулю $q$, в число простых элементов попадают псевдопростые числа, которые являются составными числами. Случай $q=3,4,6$ выделяется из числа других тем, что псевдопростые числа являются произведением двух простых чисел сравнимых с $q-1$ по модулю $q$. Таким образом, для множества простых элементов $P(M_{q,1})$ моноида $M_{q,1}$ в этом случае справедливо равенство $P(M_{q,1})=\mathbb{P}_{q,1}\bigcup(\mathbb{P}_{q,q-1}\cdot\mathbb{P}_{q,q-1})$.
Так как моноид $M_{q,1}$ не имеет однозначности разложения на простые элементы, то дзета-функция
$$ \zeta(M_{q,1}|\alpha)=\sum_{n\in M_{q,1}}\frac{1}{n^\alpha} $$
моноида $M_{q,1}$ не равна эйлерову произведению
$$ P(M_{q,1}|\alpha)=\prod_{r\in P(M_{q,1})}(1-\frac{1}{r^\alpha})^{-1}. $$
Поэтому, изучение распределения простых элементов в моноиде $M_{q,1}$ с помощью аналитических свойств логарифмической производной дзета-функции моноида не представляется возможным.
Для полноты изложения сначала в работе изучается вопрос о количестве составных чисел, равных произведению двух простых чисел, с помощью неравенств Чебышёва, так как в этом году исполнилось 170 лет со дня выхода первого мемуара П. Л. Чебышёва о простых числах.
Затем с помощью неравенства Бруна-Титчмарша получена верхняя оценка количества составных чисел сравнимых с $1$ по модулю $q$ и равных произведению двух простых чисел.
Подход, применённый к общему случаю, затем переносится на случай простых элементов в моноидах $M_{q,1}$ при $q=3,4,6$.
В заключение рассмотрены актуальные задачи с дзета-функциями моноидов натуральных чисел, требующие дальнейшего исследования.

Ключевые слова: дзета-функция Римана, ряд Дирихле, дзета-функция моноида натуральных чисел, эйлерово произведение.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 16-41-710194_р_центр_а
Работа подготовлена по гранту РФФИ №16-41-710194_р_центр_а.


DOI: https://doi.org/10.22405/2226-8383-2018-19-2-123-141

Полный текст: PDF файл (464 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 511.3

Образец цитирования: Н. Н. Добровольский, А. О. Калинина, М. Н. Добровольский, Н. М. Добровольский, “О количестве простых элементов в некоторых моноидах натуральных чисел”, Чебышевский сб., 19:2 (2018), 123–141

Цитирование в формате AMSBIB
\RBibitem{DobKalDob18}
\by Н.~Н.~Добровольский, А.~О.~Калинина, М.~Н.~Добровольский, Н.~М.~Добровольский
\paper О количестве простых элементов в некоторых моноидах натуральных чисел
\jour Чебышевский сб.
\yr 2018
\vol 19
\issue 2
\pages 123--141
\mathnet{http://mi.mathnet.ru/cheb644}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-123-141}
\elib{http://elibrary.ru/item.asp?id=37112144}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cheb644
  • http://mi.mathnet.ru/rus/cheb/v19/i2/p123

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:56
    Полный текст:20
    Литература:2
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020