RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2018, Volume 19, Issue 3, Pages 183–201 (Mi cheb687)  

The estimate of weighted Kloosterman sums by additive shift

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, 119991, Moscow, Russia, Gubkina str., 8

Abstract: Additive shift is a widely used tool in the estimating of exponential sums and character sums. It bases on the replacement of the summation variable $n$ by the expression of the type $n+x$ and the summation over artificially introduced variable $x$. The transformation of the simple sum to multiple sum gives an additional opportunities, which allow one on obtain the non-trivial bound for the initial sum. This shift was widely used by I.G. van der Corput, I.M. Vinogradov, D.A. Burgess, A.A. Karatsuba and many other researchers. It became very useful tool also in dealing with character sums in finite fields and with multiple exponential sums.
E. Fouvry and P. Michel (1998) and then J. Bourgain (2005) used successfully this shift to the estimation of Kloosterman sums. E. Fouvry and P. Michel combine additive shift with deep-lying results from algebraic geometry. On the contrary, the method of J. Bourgain is completely elementary. For example, it allows to the author to give elementary proof of the estimate of Kloosterman sum prime modulo $q$ with primes in the case when its length $N$ exceeds $q^{ 1/2+\varepsilon}$.
In this paper, we give some new elementary applications of additive shift to weighted Kloosterman sums of the type
$$ \sum\limits_{n\le N}f(n)\exp{(\frac{2\pi ia}{q} (n+b)^{*})},\quad (ab,q)=1. $$
Here $q$ is prime and weight function $f(n)$ is equal to $\tau(n)$, that is, the number of divisors of $n$, or equal to $r(n)$, which is the number of representations of $n$ by the sum of two squares of integers. The bounds for these sums are non-trivial for $N\ge q^{ 2/3+\varepsilon}$.
As a corollary of such estimates, we obtain some new results concerning the distribution of the fractional parts of the following type
$$ \{\frac{a}{q} (uv+b)^{*}\},\quad \{\frac{a}{q} (u^{2}+v^{2}+b)^{*}\}, $$
where the integers $u$, $v$ run through the hyperbolic ($uv\le N$) and circle ($u^{2}+v^{2}\le N$) domains, consequently.

Keywords: inverse residues, Kloosterman sums, additive shift, divisor function.

Funding Agency Grant Number
Russian Science Foundation 14-11-00433


DOI: https://doi.org/10.22405/2226-8383-2018-19-3-183-201

Full text: PDF file (725 kB)

UDC: 511.321
Received: 08.06.2018
Accepted:15.10.2018

Citation: M. A. Korolev, “The estimate of weighted Kloosterman sums by additive shift”, Chebyshevskii Sb., 19:3 (2018), 183–201

Citation in format AMSBIB
\Bibitem{Kor18}
\by M.~A.~Korolev
\paper The estimate of weighted Kloosterman sums by additive shift
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 3
\pages 183--201
\mathnet{http://mi.mathnet.ru/cheb687}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-183-201}
\elib{http://elibrary.ru/item.asp?id=39454396}


Linking options:
  • http://mi.mathnet.ru/eng/cheb687
  • http://mi.mathnet.ru/eng/cheb/v19/i3/p183

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:17
    Full text:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020