RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2018, Volume 19, Issue 3, Pages 231–240 (Mi cheb691)  

Generalization of A. I. Mal'tsev problem on commutativa subalgebras for Chevalley algebras

V. M. Levchuka, G. S. Suleimanovab

a Siberian Federal University, Krasnoyarsk, 660041 Russia
b Khakas Tecnical Institute branch of Siberian Federal University, Abakan, 655017 Russia

Abstract: In 1945 A. I. Mal'tsev investigated the problem on description of abelian subgroups of largest dimension in complex simple Lie groups. This problem's arisen from the theorem of I. Schur: The largest dimension of abelian subgroups of the group $SL(n,\mathbb{C})$ equals to $[n^2/4]$ and abelian subgroups of such dimension for $n>3$ are transformed by automorphisms into each other. A. I. Mal'tsev solved his problem by the reduction to complex Lie algebras. In Cartan – Killing theory semisimple complex Lie algebras are classified making use of the classification of root systems in Euclidean space $V$. A Chevalley algebra $\mathcal{L}_\Phi(K)$ is associated with the indecomposable root system $\Phi$ and with the field $K$; the base of the Chevalley algebra consists of the base of certain abelian self-normalized subalgebra $H$ and of the elements $e_r$ $(r\in \Phi)$ with $H$-invariant subspace $Ke_r$. The elements $e_r$ $(r\in\Phi^+)$ form a base of niltriangular subalgebra $N\Phi(K)$. Methods of A. I. Mal'tsev were developed for the solving of the problem on large abelian subgroups in finite Chevalley groups. In this article we use the worked out methods for the reduction of A. I. Mal'cev theorem for the Chevalley algebras. We investigate the problems:
(A) to describe commutative subalgebras of largest dimension in a Chevalley algebra $\mathcal{L}_\Phi(K)$ over arbitrary field $K$.
(B) to describe commutative subalgebras of largest dimension in subalgebra $N\Phi(K)$ of the Chevalley algebra $\mathcal{L}_\Phi(K)$ over arbitrary field $K$.
In this article we give the description of all commutative subalgebras of largest dimension in subalgebra $N\Phi(K)$ of classical type over arbitrary field $K$ up to automorphisms of algebra $\mathcal{L}_\Phi(K)$ and of subalgebra $N\Phi(K)$.

Keywords: Chevalley algebra, commutative subalgebra, niltriangular subalgebra.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00707_a
This work was supported by the Russian Foundation for Basic Research (project no. 16-01-00707).


DOI: https://doi.org/10.22405/2226-8383-2018-19-3-231-240

Full text: PDF file (636 kB)
References: PDF file   HTML file

UDC: 512.554.3
Received: 25.06.2018
Accepted:15.10.2018

Citation: V. M. Levchuk, G. S. Suleimanova, “Generalization of A. I. Mal'tsev problem on commutativa subalgebras for Chevalley algebras”, Chebyshevskii Sb., 19:3 (2018), 231–240

Citation in format AMSBIB
\Bibitem{LevSul18}
\by V.~M.~Levchuk, G.~S.~Suleimanova
\paper Generalization of A.~I.~Mal'tsev problem on commutativa subalgebras for Chevalley algebras
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 3
\pages 231--240
\mathnet{http://mi.mathnet.ru/cheb691}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-231-240}
\elib{https://elibrary.ru/item.asp?id=39454400}


Linking options:
  • http://mi.mathnet.ru/eng/cheb691
  • http://mi.mathnet.ru/eng/cheb/v19/i3/p231

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:68
    Full text:11
    References:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021