|
Об алгебре и арифметике биномиальных и гауссовых коэффициентов
У. М. Пачев Кабардино-Балкарский государственный университет им. Х. М. Бербекова
Аннотация:
В работе рассматриваются вопросы, касающиеся алгебраических и арифметических свойств таких комбинаторных чисел как биномиальные, полиномиальные и гауссовы коэффициенты.
Для центральных биномиальных коэффициентов $\binom{2p}{p}$ и $\binom{2p-1}{p-1}$ установлено новое свойство сравнимости по модулю $p^3\cdot(2p-1)$, не равному степени простого числа, где $p$ и $(2p-1)$ — простые числа, при этом используется теорема Волстенхолма о том, что при $p \geqslant 5$ эти коэффициенты соответственно сравнимы с числами 2 и 1 по модулю $p^3$.
В части, относящейся к гауссовым коэффициентам $\binom{n}{k}_q$ исследованы алгебраические и арифметические свойства этих чисел. Пользуясь алгебраической интерпретацией гауссовых коэффициентов, установлено, что число $k$-мерных подпространств $n$-мерного векторного пространства над конечным полем из q элементов равно числу $(n-k)$-мерных его подпространств, при этом число $q$ от которого зависит гауссовый коэффициент должно быть степенью простого числа, являющегося характеристикой этого конечного поля.
Получены оценки снизу и сверху для суммы $\sum_{k=0}^{n} \binom{n}{k}_q$ всех гауссовых коэффициентов, достаточно близкие к ее точному значению (формула для точного значения такой суммы пока ещё не установлена), а также асимптотическая формула при $q \to \infty$. В виду отсутствия удобной производящей функции для гауссовых коэффициентов мы пользуемся исходным определением гауссового коэффициента $\binom{n}{k}_q$, при этом считаем, что $q>1$.
При исследовании арифметических свойств делимости и сравнимости гауссовых коэффициентов используется понятие первообразного корня по данному модулю. Получены условия делимости гауссовых коэффициентов $\binom{p}{k}_q$ и $\binom{p^2}{k}_q$ на простое число $p$, а также вычислена сумма всех этих коэффициентов по модулю простого числа $p$.
В заключительной части приводятся некоторые нерешенные задачи теории чисел, связанные с биномиальными и гауссовыми коэффициентами, которые могут представлять интерес для дальнейших исследований.
Ключевые слова:
центральные биномиальные коэффициенты, теорема Волстенхолма, гауссовый коэффициент, сумма гауссовых коэффициентов, делимость на простое число, сравнение по данному модулю, первообразный корень по данному модулю.
DOI:
https://doi.org/10.22405/2226-8383-2018-19-3-257-269
Полный текст:
PDF файл (671 kB)
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
Тип публикации:
Статья
УДК:
511.17+519.114 Поступила в редакцию: 30.07.2018 Принята в печать:15.10.2018
Образец цитирования:
У. М. Пачев, “Об алгебре и арифметике биномиальных и гауссовых коэффициентов”, Чебышевский сб., 19:3 (2018), 257–269
Цитирование в формате AMSBIB
\RBibitem{Pac18}
\by У.~М.~Пачев
\paper Об алгебре и арифметике биномиальных и гауссовых коэффициентов
\jour Чебышевский сб.
\yr 2018
\vol 19
\issue 3
\pages 257--269
\mathnet{http://mi.mathnet.ru/cheb693}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-257-269}
\elib{https://elibrary.ru/item.asp?id=39454402}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/cheb693 http://mi.mathnet.ru/rus/cheb/v19/i3/p257
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 96 | Полный текст: | 29 | Литература: | 4 |
|