Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2019, Volume 20, Issue 1, Pages 46–65 (Mi cheb717)  

Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions

A. Balčiūnasa, R. Macaitienėbc, D. Šiaučiūnasb

a Vilnius University, Lithuania
b Research Institute, Šiauliai University, Lithuania
c Šiauliai State College, Lithuania

Abstract: The Selberg class $\mathcal{S}$ contains Dirichlet series
$$ \mathcal{L}(s)= \sum_{m=1}^\infty \frac{a(m)}{m^s}, \quad s=\sigma+it, $$
such that, for every $\varepsilon>0$, $a(m)\ll_\varepsilon m^\varepsilon$; there exists an integer $k\geqslant 0$ such that $(s-1)^k \mathcal{L}(s)$ is an entire function of finite order; the functions $\mathcal{L}$ satisfy a functional equation connecting $s$ with $1-s$, and have a product representation over prime numbers. Steuding introduced a subclass $\widetilde{\mathcal{S}}$ of $\mathcal{S}$ with additional condition
$$ \lim_{x\to\infty} (\sum_{p\leqslant x} 1)^{-1} \sum_{p\leqslant x}|a(p)|^2=\kappa>0, $$
where $p$ runs prime numbers.
Let $\alpha$, $0<\alpha\leqslant 1$, be a fixed parameter, and $\mathfrak{a}=\{a_m: m\in \mathbb{N}_0\}$ be a periodic sequence of complex numbers. The second object of the paper is the periodic Hurwitz zeta-function $\zeta(s,\alpha;\mathfrak{a})$ which is defined, for $\sigma>1$, by the Dirichlet series
$$ \zeta(s,\alpha; \mathfrak{a})=\sum_{m=0}^\infty \frac{a_m}{(m+\alpha)^s}, $$
and is meromorphically continued to the whole complex plane.
The paper is devoted to the discrete universality of the collection
$$ (\mathcal{L}(\widetilde{s}), \zeta(s,\alpha_1; \mathfrak{a}_{11}), …,\zeta(s,\alpha_1; \mathfrak{a}_{1l_1}), …, \zeta(s,\alpha_r; \mathfrak{a}_{r1}), …, \zeta(s,\alpha_r; \mathfrak{a}_{rl_r})), $$
where $\mathcal{L}(\widetilde{s})\in \widetilde{S}$, and $\zeta(s,\alpha_j; \mathfrak{a}_{jl_j})$ are periodic Hurwitz zeta-functions, i. e., to the simultaneous approximation of a collection
$$ (f(\widetilde{s}), f_{11}(s),…, f_{1l_1}(s), …, f_{r1}(s), …, f_{rl_r}(s)) $$
of analytic functions from a wide class by a collection of shifts
\begin{align*} (\mathcal{L}(\widetilde{s}+ikh), &\zeta(s+ikh_1,\alpha_1; \mathfrak{a}_{11}), …,\zeta(s+ikh_1,\alpha_1; \mathfrak{a}_{1l_1}), …, & \zeta(s+ikh_r,\alpha_r; \mathfrak{a}_{r1}), …, \zeta(s+ikh_r,\alpha_r; \mathfrak{a}_{rl_r})), \end{align*}
where $h, h_1, …, h_r$ are positive numbers, is considered. For this, the linear independence over the field of rational numbers for the set
$$ \{(h\log p: p\in \mathbb{P}), ( h_j\log(m+\alpha_j): m\in \mathbb{N}_0,  j=1,…, r), 2\pi\}, $$
where $\mathbb{P}$ denotes the set of all prime numbers, is applied.

Keywords: Dirichlet series, Hurwitz zeta-function, periodic Hurwitz zeta-function, Selberg class, universality, weak convergence.

DOI: https://doi.org/10.22405/2226-8383-2018-20-1-46-65

Full text: PDF file (736 kB)
References: PDF file   HTML file

UDC: 511.3
Received: 09.01.2019
Accepted:10.04.2019
Language:

Citation: A. Balčiūnas, R. Macaitienė, D. Šiaučiūnas, “Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions”, Chebyshevskii Sb., 20:1 (2019), 46–65

Citation in format AMSBIB
\Bibitem{BalMacSia19}
\by A.~Bal{\v{c}}i{\=u}nas, R.~Macaitien{\.e}, D.~{\v S}iau{\v{c}}i{\=u}nas
\paper Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 46--65
\mathnet{http://mi.mathnet.ru/cheb717}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-46-65}


Linking options:
  • http://mi.mathnet.ru/eng/cheb717
  • http://mi.mathnet.ru/eng/cheb/v20/i1/p46

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:44
    Full text:7
    References:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021