Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2019, Volume 20, Issue 1, Pages 284–293 (Mi cheb733)  

Generalized Gaussian sums and Bernoulli polynomials

V. N. Chubarikov

Mechanics and Mathematics Faculty of Moscow State University named after M. V. Lomonosov, Moscow

Abstract: The conception of Generalized Gaussian Sum $G_f(m)$ for a periodic arithmetical functon with a period, is equal prime number $q,$ for integers $m,n$ is introduce:
$$ G_f(m)=\sum_{n=1}^{q-1}(\frac nq)f(\frac{mn}q). $$
Here are considered the particular cases $f(x)=B_\nu(\{x\}), \nu\geq 1,$ where $B_\nu(x)$ — Bernoulli polynomials.
The paper uses the technique of finite Fourier series. If the function $f(\frac{k}{q})$ is defined at $k=0,1,\ldots,q-1$, it can be decomposed into a finite Fourier series
$$ f(\frac{k}{q})=\sum_{m=0}^{q-1}c_me^{2\pi i\frac{mk}{q}}, \quad c_m=\frac{1}{q}\sum_{k=0}^{q-1}f(\frac{k}{q})e^{-2\pi i\frac{mk}{q}}. $$

By decomposition into a finite Fourier series of a generalized Gauss sum
$$ G_\nu(m)=G_\nu(m;B_\nu)=\sum_{n=1}^{q-1}(\frac nq)B_\nu{(\{x+\frac{mn}q\})} $$
for $\nu=1$ and $\nu=2$ , new formulas are found that Express the value of the Legendre symbol through the full sums of periodic functions. This circumstance makes it possible to obtain new analytical properties of the corresponding Dirichlet series and arithmetic functions, which will be the topic of the following works.
An important property of the sums $G_1$ and $G_2$, namely:
$G_1\ne 0,$ if $q\equiv 3\pmod 4$ and $G_1=0,$ if $q\equiv 1\pmod 4;$
$G_2= 0,$ if $q\equiv 3\pmod 4$ and $G_2=\frac 1{q^2}\sum\limits_{n=1}^{q-1}n^2(\frac nq),$ if $q\equiv 1\pmod 4.$

Keywords: Gaussian sums, Bernoulli polynomials, the Legandre symbol.

DOI: https://doi.org/10.22405/2226-8383-2018-20-1-284-293

Full text: PDF file (663 kB)
References: PDF file   HTML file

UDC: 511.3
Received: 01.02.2019
Accepted:10.04.2019

Citation: V. N. Chubarikov, “Generalized Gaussian sums and Bernoulli polynomials”, Chebyshevskii Sb., 20:1 (2019), 284–293

Citation in format AMSBIB
\Bibitem{Chu19}
\by V.~N.~Chubarikov
\paper Generalized Gaussian sums and Bernoulli polynomials
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 284--293
\mathnet{http://mi.mathnet.ru/cheb733}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-284-293}


Linking options:
  • http://mi.mathnet.ru/eng/cheb733
  • http://mi.mathnet.ru/eng/cheb/v20/i1/p284

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:65
    Full text:14
    References:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021