RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2019, Volume 20, Issue 3, Pages 154–164 (Mi cheb805)  

On behavior of arithmetical functions, related to Chebyshev function

S. A. Gritsenkoa, E. Dezab, L. V. Varukhinab

a Lomonosov Moscow state University (Moscow)
b Moscow Pedagogical State University (Moscow)

Abstract: Many problems of Number Theory are connected with investigation of Dirichlet series $f(s)=\sum_{n=1}^{\infty} a_nn^{-s}$ and the adding functions $\Phi(x)=\sum_{n\leq x} a_n$ of their coefficients. The most famous Dirichlet series is the Riemann zeta function $\zeta(s)$, defined for any $s=\sigma+it$ with $\Re s=\sigma> 1$ as $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$
The square of zeta function $\zeta^{2}(s)=\sum_{n=1}^{\infty}\frac{\tau(n)}{n^s},    \Re s > 1,$ is connected with the divisor function $\tau (n)=\sum_ { d | n } 1$, giving the number of a positive integer divisors of positive integer number $n$. The adding function of the Dirichlet series $\zeta^2(s)$ is the function $D (x)=\sum_ { n\leq x}\tau(n)$; the questions of the asymptotic behavior of this function are known as Dirichlet divisor problem. Generally, $ \zeta^{k}(s)=\sum_{n=1}^{\infty}\frac{\tau_k(n)}{n^s},    \Re s > 1, $ where function $\tau_k (n)=\sum_{n=n_1\cdot...\cdot n_k} 1$ gives the number of representations of a positive integer number $n$ as a product of $k$ positive integer factors. The adding function of the Dirichlet series $ \zeta^k (s)$ is the function $D_k (x)=\sum_ { n\leq x}\tau_k(n)$; its research is known as the multidimensional Dirichlet divisor problem.
The logarithmic derivative $\frac{\zeta^{'}(s)}{\zeta(s)}$ of zeta function can be represented as $\frac{\zeta^{'}(s)}{\zeta(s)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$ $\Re s >1.$ Here $\Lambda(n)$ is the Mangoldt function, defined as $\Lambda(n)=\log p$, if $n=p^{k}$ for a prime number $p$ and a positive integer number $k$, and as $\Lambda(n)=0$, otherwise. So, the Chebyshev function $\psi(x)=\sum_{n\leq x}\Lambda(n)$ is the adding function of the coefficients of the Dirichlet series $\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$, corresponding to logarithmic derivative $\frac{\zeta^{'}(s)}{\zeta(s)}$ of zeta function. It is well-known in analytic Number Theory and is closely connected with many important number-theoretical problems, for example, with asymptotic law of distribution of prime numbers.
In particular, the following representation of $\psi(x)$ is very useful in many applications: $\psi(x)=x-\sum_{|\Im \rho|\leq T}\frac{x^{\rho}}{\rho}+O(\frac{x\ln^{2}x}{T}), $ where $x=n+0,5$, $n \in\mathbb{N}$, $2\leq T \leq x$, and $\rho=\beta+i\gamma$ are non-trivial zeros of zeta function, i.e., the zeros of $\zeta(s)$, belonging to the critical strip $0< \Re s<1$.
We obtain similar representations over non-trivial zeros of zeta function for an arithmetic function, relative to the Chebyshev function: $\psi_{1}(x)=\sum_{n\leq x}(x-n)\Lambda(n).$ In fact, we prove the following theorem: $\psi_1(x)=\frac{x^2}{2}-(\frac{\zeta^{'}(0)}{\zeta(0)})x-\sum_{|\Im \rho|\leq T}\frac{x^{\rho+1}}{\rho(\rho+1)}+O(\frac{x^{2}}{T^2}\ln^2 x)+O(\sqrt{x}\ln^2x), $ where $x>2$, $T \geq 2$, and $\rho=\beta+i\gamma$ are non-trivial zeros of zeta function, i.e., the zeros of $\zeta(s)$, belonging to the critical strip $0< \Re s<1$.

Keywords: arithmetical functions, Dirichlet series, adding function of the coefficients of a Dirichlet series, the Riemann zeta function, the Chebyshev function, non-trivial zeros of the Riemann zeta function, Cauchy's residue theorem.

DOI: https://doi.org/10.22405/2226-8383-2018-20-3-154-164

Full text: PDF file (620 kB)

UDC: 517
Received: 16.10.2019
Accepted:12.11.2019

Citation: S. A. Gritsenko, E. Deza, L. V. Varukhina, “On behavior of arithmetical functions, related to Chebyshev function”, Chebyshevskii Sb., 20:3 (2019), 154–164

Citation in format AMSBIB
\Bibitem{GriDezVar19}
\by S.~A.~Gritsenko, E.~Deza, L.~V.~Varukhina
\paper On behavior of arithmetical functions, related to Chebyshev function
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 3
\pages 154--164
\mathnet{http://mi.mathnet.ru/cheb805}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-3-154-164}


Linking options:
  • http://mi.mathnet.ru/eng/cheb805
  • http://mi.mathnet.ru/eng/cheb/v20/i3/p154

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:9
    Full text:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020