Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2020, Volume 21, Issue 1, Pages 9–50 (Mi cheb859)  

Analytical and number-theoretical properties of the two-dimensional sigma function

T. Ayanoa, V. M. Buchstaberb

a Osaka City University, Advanced Mathematical Institute (Osaka, Japan)
b Steklov Mathematical Institute of Russian Academy of Sciences (Moscow)

Abstract: This survey is devoted to the classical and modern problems related to the entire function ${\sigma({\mathbf{u}};\lambda)}$, defined by a family of nonsingular algebraic curves of genus $2$, where ${\mathbf{u}} = (u_1,u_3)$ and $\lambda = (\lambda_4, \lambda_6,\lambda_8,\lambda_{10})$. It is an analogue of the Weierstrass sigma function $\sigma({{u}};g_2,g_3)$ of a family of elliptic curves. Logarithmic derivatives of order $2$ and higher of the function ${\sigma({\mathbf{u}};\lambda)}$ generate fields of hyperelliptic functions of ${\mathbf{u}} = (u_1,u_3)$ on the Jacobians of curves with a fixed parameter vector $\lambda$. We consider three Hurwitz series $\sigma({\mathbf{u}};\lambda)=\sum_{m,n\ge0}a_{m,n}(\lambda)\frac{u_1^mu_3^n}{m!n!}$, $\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\xi_k(u_1;\lambda)\frac{u_3^k}{k!}$ and $\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\mu_k(u_3;\lambda)\frac{u_1^k}{k!}$. The survey is devoted to the number-theoretic properties of the functions $a_{m,n}(\lambda)$, $\xi_k(u_1;\lambda)$ and $\mu_k(u_3;\lambda)$. It includes the latest results, which proofs use the fundamental fact that the function ${\sigma ({\mathbf{u}};\lambda)}$ is determined by the system of four heat equations in a nonholonomic frame of six-dimensional space.

Keywords: Abelian functions, two-dimensional sigma functions, Hurwitz integrality, generalized Bernoulli—Hurwitz number, heat equation in a nonholonomic frame.

Funding Agency Grant Number
Ministry of Education, Culture, Sports, Science and Technology, Japan
This work was (partly) supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).


DOI: https://doi.org/10.22405/2226-8383-2020-21-1-9-50

Full text: PDF file (863 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 515.178.2+517.58, 512.554.32+517.98
Language:

Citation: T. Ayano, V. M. Buchstaber, “Analytical and number-theoretical properties of the two-dimensional sigma function”, Chebyshevskii Sb., 21:1 (2020), 9–50

Citation in format AMSBIB
\Bibitem{AyaBuc20}
\by T.~Ayano, V.~M.~Buchstaber
\paper Analytical and number-theoretical properties of the two-dimensional sigma function
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 1
\pages 9--50
\mathnet{http://mi.mathnet.ru/cheb859}
\crossref{https://doi.org/10.22405/2226-8383-2020-21-1-9-50}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4135206}


Linking options:
  • http://mi.mathnet.ru/eng/cheb859
  • http://mi.mathnet.ru/eng/cheb/v21/i1/p9

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:51
    Full text:18
    References:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021