Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2020, Volume 21, Issue 3, Pages 232–240 (Mi cheb938)  

BRIEF MESSAGE

Asymptotic estimation for trigonometric sums of algebraic grids

E. M. Rarovaa, N. N. Dobrovol'skiiab, I. Yu. Rebrovaa

a Tula State Lev Tolstoy Pedagogical University (Tula)
b Tula State University (Tula)

Abstract: The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the arbitrary weight function of the $r+1$ order.
For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho} (\vec m)$, three cases are highlighted.
If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid
$$ S_{M(t),\vec\rho}(t(m,\ldots, m))=1+O(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}). $$

If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved
$$ |S_{M(t),\vec\rho}(\vec{m})|\le B_r(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}})). $$


Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.

Funding Agency Grant Number
Russian Foundation for Basic Research 19-41-710004__
The work has been prepared by the RFBR grant №19-41-710004__.


DOI: https://doi.org/10.22405/2226-8383-2018-21-3-232-240

Full text: PDF file (752 kB)

UDC: 511.3
Received: 28.05.2020
Accepted:22.10.2020

Citation: E. M. Rarova, N. N. Dobrovol'skii, I. Yu. Rebrova, “Asymptotic estimation for trigonometric sums of algebraic grids”, Chebyshevskii Sb., 21:3 (2020), 232–240

Citation in format AMSBIB
\Bibitem{RarDobReb20}
\by E.~M.~Rarova, N.~N.~Dobrovol'skii, I.~Yu.~Rebrova
\paper Asymptotic estimation for trigonometric sums of algebraic grids
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 3
\pages 232--240
\mathnet{http://mi.mathnet.ru/cheb938}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-3-232-240}


Linking options:
  • http://mi.mathnet.ru/eng/cheb938
  • http://mi.mathnet.ru/eng/cheb/v21/i3/p232

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:13
    Full text:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022