Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyab. Fiz.-Mat. Zh., 2019, Volume 4, Issue 3, Pages 276–284 (Mi chfmj145)  

Mathematics

The boundary of stability in a simple class of monodromic germs

N. B. Medvedeva, V. A. Viktorova

Chelyabinsk State University, Chelyabinsk, Russia

Abstract: A two-parameter family of vector fields is constructed with a monodromic singular point and with a Newton diagram consisting of one edge. For this family, the conditions of "nondegeneracy" are satisfied, allowing it to be assigned to a class with a simple monodromic singular point. The asymptotics of the stability boundary in this family is constructed, which contains terms with a logarithm, which implies the analytical unsolvability of the stability problem in the closure of this class of vector fields with a simple monodromic singular point.

Keywords: monodromic singular point, focus, center, monodromy transformation, Newton diagram, stability boundary, analytic solvability.

DOI: https://doi.org/10.24411/2500-0101-2019-14303

Full text: PDF file (653 kB)
References: PDF file   HTML file

UDC: 517.9
Received: 23.07.2019
Revised: 09.09.2019

Citation: N. B. Medvedeva, V. A. Viktorova, “The boundary of stability in a simple class of monodromic germs”, Chelyab. Fiz.-Mat. Zh., 4:3 (2019), 276–284

Citation in format AMSBIB
\Bibitem{MedVik19}
\by N.~B.~Medvedeva, V.~A.~Viktorova
\paper The boundary of stability in a simple class of monodromic germs
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2019
\vol 4
\issue 3
\pages 276--284
\mathnet{http://mi.mathnet.ru/chfmj145}
\crossref{https://doi.org/10.24411/2500-0101-2019-14303}


Linking options:
  • http://mi.mathnet.ru/eng/chfmj145
  • http://mi.mathnet.ru/eng/chfmj/v4/i3/p276

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Number of views:
    This page:52
    Full text:8
    References:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022