Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyab. Fiz.-Mat. Zh., 2019, Volume 4, Issue 3, Pages 285–322 (Mi chfmj146)  

Mathematics

Extremal by Wiener index maximal outerplane graphs with two simplicial vertices

Yu. L. Nosov

Guardian Software Inc., Calgary, Canada; remote office: Lipetsk, Russia

Abstract: We consider the maximal outerplane graphs (mops) with two simplicial vertices, with the extreme values of the Wiener index. The lower $W^L_n = n^2-3n+3$ and upper $W^U_n=(4n^3+6n^2-4n-3+3(-1)^n)/48$ bounds of the Wiener index of arbitrary mops of the order $n$ are determined. For the lattice mops (L-mops), i. e. the graphs that are laid out on the lattice of equilateral triangles without voids and overlaps, we prove that the upper bound of Wiener index matches that of the arbitrary mops. The lower bound $W^{[L]}_n$ of Wiener index of L-mops is defined as follows: $W^{[L]}_n = (n^3 +6n^2-15n+26)/18$ if $(n- 4) \bmod 3 = 0$ and $W^{[L]}_n = (n^3 +6n^2-9n+2-2(-1)^q)/18$ if $(n- 4) \bmod 3 = q$ where $q=1,2$.
For the lower and upper bounds of Wiener index of arbitrary and lattice mops we determine the extremal graphs, where these bounds are reached. We provide a constructive classification of L-mops. For all classes of L-mops we determine the extremal graphs and their respective Wiener indices. For each class of L-mops we show the existence of isomorphism and geometric similarity between dual graphs of L-mop class and molecular graphs of isomers and conformers of conjugated polyene hydrocarbons (CPH). The obtained results can be used for classification of shapes in images represented by mops and for classification of CPH isomers.

Keywords: maximal outerplane graph, extremal graph, Wiener index.

DOI: https://doi.org/10.24411/2500-0101-2019-14304

Full text: PDF file (1246 kB)
References: PDF file   HTML file

UDC: 519.176
Received: 20.06.2019
Revised: 03.09.2019

Citation: Yu. L. Nosov, “Extremal by Wiener index maximal outerplane graphs with two simplicial vertices”, Chelyab. Fiz.-Mat. Zh., 4:3 (2019), 285–322

Citation in format AMSBIB
\Bibitem{Nos19}
\by Yu.~L.~Nosov
\paper Extremal by Wiener index maximal outerplane graphs with two simplicial vertices
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2019
\vol 4
\issue 3
\pages 285--322
\mathnet{http://mi.mathnet.ru/chfmj146}
\crossref{https://doi.org/10.24411/2500-0101-2019-14304}


Linking options:
  • http://mi.mathnet.ru/eng/chfmj146
  • http://mi.mathnet.ru/eng/chfmj/v4/i3/p285

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Number of views:
    This page:61
    Full text:42
    References:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021