RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2010, Volume 35, Pages 101–117 (Mi cmfd148)  

This article is cited in 8 scientific papers (total in 8 papers)

On the Moutard transformation and its applications to spectral theory and soliton equations

I. A. Taimanova, S. P. Tsarevb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Siberian Federal University, Krasnoyarsk

Full text: PDF file (2513 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2010, 170:3, 371–387

Bibliographic databases:

Document Type: Article
UDC: 517.955

Citation: I. A. Taimanov, S. P. Tsarev, “On the Moutard transformation and its applications to spectral theory and soliton equations”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, CMFD, 35, PFUR, M., 2010, 101–117; Journal of Mathematical Sciences, 170:3 (2010), 371–387

Citation in format AMSBIB
\Bibitem{TaiTsa10}
\by I.~A.~Taimanov, S.~P.~Tsarev
\paper On the Moutard transformation and its applications to spectral theory and soliton equations
\inbook Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17--24, 2008). Part~1
\serial CMFD
\yr 2010
\vol 35
\pages 101--117
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd148}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2752642}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 170
\issue 3
\pages 371--387
\crossref{https://doi.org/10.1007/s10958-010-0092-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957743489}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd148
  • http://mi.mathnet.ru/eng/cmfd/v35/p101

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Grinevich P.G., Novikov R.G., “Faddeev eigenfunctions for point potentials in two dimensions”, Phys Lett A, 376:12–13 (2012), 1102–1106  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. E. Sh. Gutshabash, “Moutard transformation and its application to some physical problems. I. The case of two independent variables”, J. Math. Sci. (N. Y.), 192:1 (2013), 57–69  mathnet  crossref  mathscinet
    3. Schulze-Halberg A., “Two-Dimensional Magnetic Schrodinger Equations, Darboux Transformations and Solutions of Associated Auxiliary Equations”, J. Math. Phys., 53:8 (2012), 082108  crossref  mathscinet  zmath  isi  elib  scopus
    4. Music M., Perry P., Siltanen S., “Exceptional Circles of Radial Potentials”, Inverse Probl., 29:4 (2013), 045004  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Perry P.A., “Miura Maps and Inverse Scattering For the Novikov-Veselov Equation”, Anal. PDE, 7:2 (2014), 311–343  crossref  mathscinet  zmath  isi  elib  scopus
    6. Croke R., Mueller J.L., Music M., Perry P., Siltanen S., Stahel A., “the Novikov-Veselov Equation: Theory and Computation”, Nonlinear Wave Equations: Analytic and Computational Techniques, Contemporary Mathematics, 635, eds. Curtis C., Dzhamay A., Hereman W., Prinari B., Amer Mathematical Soc, 2015, 25–70  crossref  mathscinet  zmath  isi
    7. P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324  mathnet  crossref  crossref  isi  elib
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:487
    Full text:209
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019