|
This article is cited in 16 scientific papers (total in 16 papers)
Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics
V. V. Vlasova, N. A. Rautianb, A. S. Shamaeva a Moscow Lomonosov State University, Faculty of Mechanics and Mathematics, Moscow, Russia
b Russian Plekhanov Academy of Economics, Faculty of Economics and Mathematics, Moscow, Russia
Abstract:
In the present paper, we study integrodifferential equations with unbounded operator coefficients in Hilbert spaces. The principal part of the equation is an abstract hyperbolic equation perturbed by summands with Volterra integral operators. These equations represent an abstract form of the Gurtin–Pipkin integrodifferential equation describing the process of heat conduction in media with memory and the process of sound conduction in viscoelastic media and arise in averaging problems in perforated media (the Darcy law).
The correct solvability of initial-boundary problems for the specified equations is established in weighted Sobolev spaces on a positive semiaxis.
Spectral problems for operator-functions are analyzed. Such functions are symbols of these equations. The spectrum of the abstract integrodifferential Gurtin–Pipkin equation is investigated.
Full text:
PDF file (325 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences, 2013, 190:1, 34–65
Bibliographic databases:
UDC:
517.929
Citation:
V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics”, Partial differential equations, CMFD, 39, PFUR, M., 2011, 36–65; Journal of Mathematical Sciences, 190:1 (2013), 34–65
Citation in format AMSBIB
\Bibitem{VlaRauSha11}
\by V.~V.~Vlasov, N.~A.~Rautian, A.~S.~Shamaev
\paper Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics
\inbook Partial differential equations
\serial CMFD
\yr 2011
\vol 39
\pages 36--65
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd172}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2830676}
\transl
\jour Journal of Mathematical Sciences
\yr 2013
\vol 190
\issue 1
\pages 34--65
\crossref{https://doi.org/10.1007/s10958-013-1245-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874950458}
Linking options:
http://mi.mathnet.ru/eng/cmfd172 http://mi.mathnet.ru/eng/cmfd/v39/p36
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
N. A. Rautian, “On the Structure and Properties of Solutions of Integro-Differential Equations Arising in Thermal Physics and Acoustics”, Math. Notes, 90:3 (2011), 455–459
-
V. V. Vlasov, N. A. Rautian, “Integrodifferential equations in viscoelasticity theory”, Russian Math. (Iz. VUZ), 56:6 (2012), 48–51
-
V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Analysis of operator models arising in problems of hereditary mechanics”, Journal of Mathematical Sciences, 201:5 (2014), 673–692
-
A. S. Shamaev, V. V. Shumilova, “O spektre odnomernykh kolebanii sloistogo kompozita s komponentami iz uprugogo i vyazkouprugogo materialov”, Sib. zhurn. industr. matem., 15:4 (2012), 124–134
-
Vlasov V.V. Rautian N.A., “Spectral Analysis and Representations of Solutions to Abstract Integrodifferential Equations”, Dokl. Math., 89:1 (2014), 34–37
-
A. B. Muravnik, “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, Journal of Mathematical Sciences, 216:3 (2016), 345–496
-
V. V. Vlasov, N. A. Rautian, “Properties of solutions of integro-differential equations arising in heat and mass transfer theory”, Trans. Moscow Math. Soc., 75 (2014), 185–204
-
V. V. Vlasov, R. Perez Ortiz, “Spectral Analysis of Integro-Differential Equations in Viscoelasticity and Thermal Physics”, Math. Notes, 98:4 (2015), 689–693
-
D. A. Zakora, “Operator approach to the ilyushin model for a viscoelastic body of parabolic type”, Journal of Mathematical Sciences, 225:2 (2017), 345–381
-
V. V. Vlasov, N. A. Rautian, “Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory”, Journal of Mathematical Sciences, 233:4 (2018), 555–577
-
V. V. Vlasov, N. A. Rautian, “Spektralnyi analiz integrodifferentsialnykh uravnenii v gilbertovom prostranstve”, Trudy seminara po differentsialnym i funktsionalno-differentsialnym uravneniyam v RUDN pod rukovodstvom A. L. Skubachevskogo, SMFN, 62, RUDN, M., 2016, 53–71
-
Vlasov V.V., Rautian N.A., “Study of Functional-Differential Equations With Unbounded Operator Coefficients”, Dokl. Math., 96:3 (2017), 620–624
-
A. V. Davydov, Yu. A. Tikhonov, “On Properties of the Spectrum of an Operator Pencil Arising in Viscoelasticity Theory”, Math. Notes, 103:5 (2018), 841–845
-
V. V. Vlasov, N. A. Rautian, “Issledovanie operatornykh modelei, voznikayuschikh v teorii vyazkouprugosti”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 60–73
-
V. V. Vlasov, N. A. Rautian, “A study of operator models arising in problems of hereditary mechanics”, J. Math. Sci. (N. Y.), 244:2 (2020), 170–182
-
D. A. Zakora, “Predstavlenie reshenii odnogo integro-differentsialnogo uravneniya i prilozheniya”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 2, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 171, VINITI RAN, M., 2019, 78–93
|
Number of views: |
This page: | 594 | Full text: | 213 | References: | 35 |
|