RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2003, Volume 2, Pages 45–56 (Mi cmfd20)  

Simple Coisotropic Caustics

V. M. Zakalyukin

Moscow Aviation Institute

Abstract: A complete proof of local classifications up to symplectomorphisms of simple stable pairs consisting of a Lagrangian submanifold and a coisotropic fibration is presented. This generalization of Arnold's classification of simple Lagrangian projections provides all discriminants of $A$, $B$, $C$, $D$, $E$, and F Weil groups.

Full text: PDF file (204 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2004, 124:5, 5310–5320

Bibliographic databases:

UDC: 514.16

Citation: V. M. Zakalyukin, “Simple Coisotropic Caustics”, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, CMFD, 2, MAI, M., 2003, 45–56; Journal of Mathematical Sciences, 124:5 (2004), 5310–5320

Citation in format AMSBIB
\Bibitem{Zak03}
\by V.~M.~Zakalyukin
\paper Simple Coisotropic Caustics
\inbook Proceedings of the International Conference on Differential and Functional-Differential Equations --- Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11--17 August, 2002). Part~2
\serial CMFD
\yr 2003
\vol 2
\pages 45--56
\publ MAI
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd20}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2129134}
\zmath{https://zbmath.org/?q=an:1128.53053}
\transl
\jour Journal of Mathematical Sciences
\yr 2004
\vol 124
\issue 5
\pages 5310--5320
\crossref{https://doi.org/10.1023/B:JOTH.0000047356.69997.de}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd20
  • http://mi.mathnet.ru/eng/cmfd/v2/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:201
    Full text:72
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019