RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Публикационная этика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



СМФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


СМФН, 2012, том 43, страницы 3–172 (Mi cmfd207)  

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

Задача Коши для линейного дифференциального уравнения с вырождением и усреднение аппроксимирующих ее регуляризаций

В. Ж. Сакбаев

Московский физико-технический институт, кафедра высшей математики, Московская обл., г. Долгопрудный

Аннотация: В работе рассматривается задача Коши для уравнения Шредингера, производящий оператор $\mathbf L$ которого является симметрическим линейным дифференциальным оператором в гильбертовом пространстве $H=L_2(\mathbb R^d)$, $d\in\mathbb N$, испытывающим вырождение на некотором подмножестве координатного пространства. Для исследования задачи Коши в случае нарушения условий существования решения ставится цель расширить понятие решения и изменить постановку задачи с помощью таких методов исследования некорректных задач, как метод эллиптической регуляризации (исчезающей вязкости) и метод квазирешений.
Исследуется вопрос о зависимости поведения последовательности регуляризованных полугрупп $\{ e^{-i\mathbf L_nt},t>0\}$ от выбора регуляризации $\{\mathbf L_n\}$ производящего оператора $\mathbf L$.
В случае отсутствия сходящихся последовательностей регуляризованных решений изучается сходимость соответствующей последовательности регуляризованных операторов плотности.

Полный текст: PDF файл (1646 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences, 2016, 213:3, 287–459

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.946+517.98

Образец цитирования: В. Ж. Сакбаев, “Задача Коши для линейного дифференциального уравнения с вырождением и усреднение аппроксимирующих ее регуляризаций”, Уравнения в частных производных, СМФН, 43, РУДН, М., 2012, 3–172; Journal of Mathematical Sciences, 213:3 (2016), 287–459

Цитирование в формате AMSBIB
\RBibitem{Sak12}
\by В.~Ж.~Сакбаев
\paper Задача Коши для линейного дифференциального уравнения с~вырождением и усреднение аппроксимирующих ее регуляризаций
\inbook Уравнения в частных производных
\serial СМФН
\yr 2012
\vol 43
\pages 3--172
\publ РУДН
\publaddr М.
\mathnet{http://mi.mathnet.ru/cmfd207}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3086726}
\transl
\jour Journal of Mathematical Sciences
\yr 2016
\vol 213
\issue 3
\pages 287--459
\crossref{https://doi.org/10.1007/s10958-016-2719-z}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955325408}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cmfd207
  • http://mi.mathnet.ru/rus/cmfd/v43/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. Ж. Сакбаев, “Разрушение решений задачи Коши для нелинейного уравнений Шрëдингера”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(30) (2013), 159–171  mathnet  crossref
    2. В. Ж. Сакбаев, “Градиентный взрыв решений задачи Коши для уравнения Шрëдингера”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Тр. МИАН, 283, МАИК, М., 2013, 171–187  mathnet  crossref; V. Zh. Sakbaev, “Gradient blow-up of solutions to the Cauchy problem for the Schrödinger equation”, Proc. Steklov Inst. Math., 283 (2013), 165–180  crossref  isi
    3. М. Х. Нуман Эльшейх, Д. О. Огун, Ю. Н. Орлов, Р. В. Плешаков, В. Ж. Сакбаев, “Усреднение случайных полугрупп и неоднозначность квантования гамильтоновых систем”, Препринты ИПМ им. М. В. Келдыша, 2014, 019, 28 с.  mathnet
    4. Ю. Н. Орлов, В. Ж. Сакбаев, О. Г. Смолянов, “Формулы Фейнмана как метод усреднения случайных гамильтонианов”, Избранные вопросы математической физики и анализа, Сборник статей. К 90-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 285, МАИК, М., 2014, 232–243  mathnet  crossref; Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232  crossref  isi
    5. И. В. Волович, В. Ж. Сакбаев, “Об универсальной краевой задаче для уравнений математической физики”, Избранные вопросы математической физики и анализа, Сборник статей. К 90-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 285, МАИК, М., 2014, 64–88  mathnet  crossref; I. V. Volovich, V. Zh. Sakbaev, “Universal boundary value problem for equations of mathematical physics”, Proc. Steklov Inst. Math., 285 (2014), 56–80  crossref  isi
    6. Sakbaev V.Zh., Smolyanov O.G., Shamarov N.N., “Non-Gaussian Lagrangian Feynman-Kac Formulas”, Dokl. Math., 90:1 (2014), 416–418  crossref  mathscinet  zmath  isi  elib  scopus
    7. Л. А. Борисов, Ю. Н. Орлов, В. Ж. Сакбаев, “Формулы Фейнмана для усреднения полугрупп, порождаемых операторами типа Шредингера”, Препринты ИПМ им. М. В. Келдыша, 2015, 057, 23 с.  mathnet
    8. Л. А. Борисов, Ю. Н. Орлов, В. Ж. Сакбаев, “Эквивалентность по Чернову применительно к уравнениям эволюции матрицы плотности и функции Вигнера для линейного квантования”, Препринты ИПМ им. М. В. Келдыша, 2015, 066, 28 с.  mathnet
    9. Л. С. Ефремова, В. Ж. Сакбаев, “Понятие взрыва множества решений дифференциальных уравнений и усреднение случайных полугрупп”, ТМФ, 185:2 (2015), 252–271  mathnet  crossref  mathscinet  adsnasa  elib; L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theoret. and Math. Phys., 185:2 (2015), 1582–1598  crossref  isi
    10. В. Ж. Сакбаев, “О законе больших чисел для композиций независимых случайных полугрупп”, Изв. вузов. Матем., 2016, № 10, 86–91  mathnet  elib; V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russian Math. (Iz. VUZ), 60:10 (2016), 72–76  crossref  elib
    11. Ю. Н. Орлов, В. Ж. Сакбаев, О. Г. Смолянов, “Неограниченные случайные операторы и формулы Фейнмана”, Изв. РАН. Сер. матем., 80:6 (2016), 141–172  mathnet  crossref  mathscinet  elib; Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158  crossref  isi
  • Современная математика. Фундаментальные направления
    Просмотров:
    Эта страница:472
    Полный текст:182
    Литература:29

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017