RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2012, Volume 46, Pages 141–152 (Mi cmfd234)  

On the index formula for an isometric diffeomorphism

A. Yu. Savinab, B. Yu. Sterninab, E. Schroheb

a People's Friendship University of Russia, Moscow, Russia
b Hannover Leibnitz-Universität, Hannover, Germany

Abstract: We give an elementary solution to the problem of the index of elliptic operators associated with shift operator along the trajectories of an isometric diffeomorphism of a smooth closed manifold. This solution is based on index-preserving reduction of the operator under consideration to some elliptic pseudo-differential operator on a higher-dimension manifold and on the application of the Atiyah–Singer formula. The final formula of the index is given in terms of the symbol of the operator on the original manifold.

Full text: PDF file (153 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2014, 201:6, 818–829

Document Type: Article
UDC: 515.168.5+517.956.22

Citation: A. Yu. Savin, B. Yu. Sternin, E. Schrohe, “On the index formula for an isometric diffeomorphism”, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, CMFD, 46, PFUR, M., 2012, 141–152; Journal of Mathematical Sciences, 201:6 (2014), 818–829

Citation in format AMSBIB
\Bibitem{SavSteSch12}
\by A.~Yu.~Savin, B.~Yu.~Sternin, E.~Schrohe
\paper On the index formula for an isometric diffeomorphism
\inbook Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2011). Part~2
\serial CMFD
\yr 2012
\vol 46
\pages 141--152
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd234}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 201
\issue 6
\pages 818--829
\crossref{https://doi.org/10.1007/s10958-014-2027-4}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919904838}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd234
  • http://mi.mathnet.ru/eng/cmfd/v46/p141

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:198
    Full text:38
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018