RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2013, Volume 51, Pages 123–141 (Mi cmfd258)  

Weak parities and functorial maps

I. M. Nikonov

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider functorial maps and weak parities that are two equivalent descriptions of one object. Functorial maps allow one to transform knots and extend knot invariants with these transformations. We introduce maximal weak parity and calculate it for knots in a given closed oriented surface. The weak parity induce a projection from virtual knots onto classical ones.

Full text: PDF file (435 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2016, 214:5, 699–717

UDC: 515.16+519.17

Citation: I. M. Nikonov, “Weak parities and functorial maps”, Topology, CMFD, 51, PFUR, M., 2013, 123–141; Journal of Mathematical Sciences, 214:5 (2016), 699–717

Citation in format AMSBIB
\Bibitem{Nik13}
\by I.~M.~Nikonov
\paper Weak parities and functorial maps
\inbook Topology
\serial CMFD
\yr 2013
\vol 51
\pages 123--141
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd258}
\transl
\jour Journal of Mathematical Sciences
\yr 2016
\vol 214
\issue 5
\pages 699--717
\crossref{https://doi.org/10.1007/s10958-016-2807-0}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd258
  • http://mi.mathnet.ru/eng/cmfd/v51/p123

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:123
    Full text:45
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021