RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2015, Volume 57, Pages 31–64 (Mi cmfd271)  

This article is cited in 3 scientific papers (total in 3 papers)

Operator approach to the ilyushin model for a viscoelastic body of parabolic type

D. A. Zakoraab

a Voronezh State University, Voronezh
b Vernadskiy Tavricheskiy National University, Simferopol'

Abstract: The problem of small movements of a viscoelastic body of parabolic type is studied in the paper. The unique strong solvability of the corresponding initial-boundary value problem is proved. The spectrum and the properties of root elements of the emerging operator block are studied. More precisely, the theorem about both the essential and the discrete spectrum of the main operator block is proved. The asymptotic formula for the series of eigenvalues condensing at infinity is found. Completeness and the basis property of the system of root elements of the main operator are established. Presentations for a solution of the original second-order integrodifferential equation are found both in the form of contour integrals and expansions in the system of eigenvectors of some operator pencil. A certain statement concerning stabilization of solutions to the evolution problem is proved. In the last section, the case of a synchronously isotropic medium of parabolic type is studied as a particular case of the model considered.

Full text: PDF file (422 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2017, 225:2, 345–381

UDC: 517.984.48+532.135

Citation: D. A. Zakora, “Operator approach to the ilyushin model for a viscoelastic body of parabolic type”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 57, PFUR, M., 2015, 31–64; Journal of Mathematical Sciences, 225:2 (2017), 345–381

Citation in format AMSBIB
\Bibitem{Zak15}
\by D.~A.~Zakora
\paper Operator approach to the ilyushin model for a~viscoelastic body of parabolic type
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2015
\vol 57
\pages 31--64
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd271}
\transl
\jour Journal of Mathematical Sciences
\yr 2017
\vol 225
\issue 2
\pages 345--381
\crossref{https://doi.org/10.1007/s10958-017-3473-6}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd271
  • http://mi.mathnet.ru/eng/cmfd/v57/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Zakora, “Model szhimaemoi zhidkosti Oldroita”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 61, RUDN, M., 2016, 41–66  mathnet
    2. D. Zakora, “On properties of root elements in the problem on small motions of viscous relaxing fluid”, Zhurn. matem. fiz., anal., geom., 13:4 (2017), 402–413  mathnet  crossref
    3. D. A. Zakora, “Operatornyi podkhod k zadache o malykh dvizheniyakh idealnoi relaksiruyuschei zhidkosti”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 64, no. 3, Rossiiskii universitet druzhby narodov, M., 2018, 459–489  mathnet  crossref
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:131
    Full text:46
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019