RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2015, Volume 58, Pages 111–127 (Mi cmfd282)  

On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data

V. S. Kublanova, V. I. Maksimovba

a Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia

Abstract: For a nonlinear system of differential equations with aftereffect, two mutually complement game minimax (maximin) problems for the quality functional are considered. Assuming that a part of phase coordinates of the system is measured (with error) sufficiently frequently, we provide solving algorithms that are stable with respect to the information noise and computational errors. The proposed algorithms are based on the Krasovskii extremal translation principle.

Funding Agency Grant Number
Russian Science Foundation 14-11-00539


Full text: PDF file (229 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2018, 233:4, 495–513

UDC: 517.977

Citation: V. S. Kublanov, V. I. Maksimov, “On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, CMFD, 58, PFUR, M., 2015, 111–127; Journal of Mathematical Sciences, 233:4 (2018), 495–513

Citation in format AMSBIB
\Bibitem{KubMak15}
\by V.~S.~Kublanov, V.~I.~Maksimov
\paper On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~1
\serial CMFD
\yr 2015
\vol 58
\pages 111--127
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd282}
\transl
\jour Journal of Mathematical Sciences
\yr 2018
\vol 233
\issue 4
\pages 495--513
\crossref{https://doi.org/10.1007/s10958-018-3940-8}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd282
  • http://mi.mathnet.ru/eng/cmfd/v58/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:157
    Full text:50
    References:51

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020