RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2016, Volume 59, Pages 148–172 (Mi cmfd291)  

This article is cited in 1 scientific paper (total in 1 paper)

Quadratic interaction estimate for hyperbolic conservation laws: an overview

S. Modena

S.I.S.S.A., Via Bonomea 265, 34136 Trieste, TS, Italy

Abstract: In the joint work with S. Bianchini [8] (see also [6,7]), we proved a quadratic interaction estimate for the system of conservation laws
\begin{equation*} \begin{cases} u_t+f(u)_x=0,
u(t=0)=u_0(x), \end{cases} \end{equation*}
where $u\colon[0,\infty)\times\mathbb R\to\mathbb R^n$, $f\colon\mathbb R^n\to\mathbb R^n$ is strictly hyperbolic, and $\operatorname{Tot.Var.}(u_0)\ll1$ For a wavefront solution in which only two wavefronts at a time interact, such estimate can be written in the form
\begin{equation*} \sum_{время взаимодействия t_j}\frac{|\sigma(\alpha_j)-\sigma(\alpha'_j)||\alpha_j||\alpha'_j|}{|\alpha_j|+|\alpha'_j|}\leq C(f)\operatorname{Tot.Var.}(u_0)^2, \end{equation*}
where $\alpha_j$ and $\alpha'_j$ are the wavefronts interacting at the interaction time $t_j,$ $\sigma(\cdot)$ is the speed, $|\cdot|$ denotes the strength, and $C(f)$ is a constant depending only on $f$ (see [8, Theorem 1.1] or Theorem 3.1 in the present paper for a more general form).
The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simplified setting, in which:
  • all the main ideas of the construction are presented;
  • all the technicalities of the proof in the general setting [8] are avoided.


Full text: PDF file (320 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517

Citation: S. Modena, “Quadratic interaction estimate for hyperbolic conservation laws: an overview”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, CMFD, 59, PFUR, M., 2016, 148–172

Citation in format AMSBIB
\Bibitem{Mod16}
\by S.~Modena
\paper Quadratic interaction estimate for hyperbolic conservation laws: an overview
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~2
\serial CMFD
\yr 2016
\vol 59
\pages 148--172
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd291}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd291
  • http://mi.mathnet.ru/eng/cmfd/v59/p148

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Modena, “A “forward-in-time” quadratic potential for systems of conservation laws”, NoDea-Nonlinear Differ. Equ. Appl., 24:5 (2017), 53  crossref  mathscinet  zmath  isi  scopus
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:52
    Full text:9
    References:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019