RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2016, Volume 60, Pages 5–22 (Mi cmfd294)  

Nonlinear integral equations with kernels of potential type on a segment

S. N. Askhabov

Chechen State University, Grozny, Russia

Abstract: We study various classes of nonlinear equations containing an operator of potential type (Riesz potential). By the monotone operators method in the Lebesgue spaces of real-valued functions $L_p(a,b)$ we prove global theorems on existence, uniqueness, estimates, and methods of obtaining of their solutions. We consider corollaries as applications of our results.

Full text: PDF file (235 kB)
References: PDF file   HTML file
UDC: 517.988.63

Citation: S. N. Askhabov, “Nonlinear integral equations with kernels of potential type on a segment”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, CMFD, 60, PFUR, M., 2016, 5–22

Citation in format AMSBIB
\Bibitem{Ask16}
\by S.~N.~Askhabov
\paper Nonlinear integral equations with kernels of potential type on a~segment
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~3
\serial CMFD
\yr 2016
\vol 60
\pages 5--22
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd294}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd294
  • http://mi.mathnet.ru/eng/cmfd/v60/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:138
    Full text:58
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020