Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2016, Volume 62, Pages 124–139 (Mi cmfd313)  

This article is cited in 2 scientific papers (total in 2 papers)

Traces of generalized solutions of elliptic differential-difference equations with degeneration

V. A. Popov

RUDN University, 6 Miklukho-Maklaya st., 117198 Moscow, Russia

Abstract: The paper is devoted to differential-difference equations with degeneration in a bounded domain $Q\subset\mathbb R^n$. We consider differential-difference operators that cannot be expressed as a composition of a strongly elliptic differential operator and a degenerated difference operator. Instead of this, operators under consideration contain several degenerated difference operators corresponding to differentiation operators. Generalized solutions of such equations may not belong even to the Sobolev space $W^1_2(Q)$.
Earlier, under certain conditions on difference and differentiation operators, we had obtained a priori estimates and proved that the orthogonal projection of the generalized solution onto the image of the difference operator preserves certain smoothness inside some subdomains $Q_r\subset Q$ ($\bigcup_r\overline Q_r=\overline Q)$ instead of the whole domain.
In this paper, we prove necessary and sufficient conditions in algebraic form for existence of traces on some parts of boundaries of subdomains $Q_r$.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.1974.2014/K


Full text: PDF file (279 kB)
References: PDF file   HTML file
UDC: 517.9

Citation: V. A. Popov, “Traces of generalized solutions of elliptic differential-difference equations with degeneration”, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), CMFD, 62, PFUR, M., 2016, 124–139

Citation in format AMSBIB
\Bibitem{Pop16}
\by V.~A.~Popov
\paper Traces of generalized solutions of elliptic differential-difference equations with degeneration
\inbook Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A.~L.~Skubachevskii (Peoples' Friendship University of Russia)
\serial CMFD
\yr 2016
\vol 62
\pages 124--139
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd313}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd313
  • http://mi.mathnet.ru/eng/cmfd/v62/p124

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Popov, “Otsenki reshenii ellipticheskikh differentsialno-raznostnykh uravnenii s vyrozhdeniem”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 131–147  mathnet  crossref
    2. V. A. Popov, “Elliptic functional differential equations with degenerations”, Lobachevskii J. Math., 41:5, SI (2020), 869–894  crossref  mathscinet  zmath  isi  scopus
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:181
    Full text:35
    References:29

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021