RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2017, Volume 63, Issue 2, Pages 316–339 (Mi cmfd322)  

Matching spectral and initial-boundary value problems

K. A. Radomirskaya

V. I. Vernadsky Crimean Federal University, 4 Vernadsky Avenue, 295007 Simferopol, Russia

Abstract: Based on the approach to abstract matching boundary-value problems introduced in [18], we consider matching spectral problems for one and two domains. We study in detail the arising operator pencil with self-adjoint operator coefficients. This pencil acts in a Hilbert space and depends on two parameters. Both possible cases are considered, where one parameter is spectral and the other is fixed, and properties of solutions are obtained depending on this. Also we study initial-boundary value problems of mathematical physics generating matching problems. We prove theorems on unique solvability of a strong solution ranging in the corresponding Hilbert space.

DOI: https://doi.org/10.22363/2413-3639-2017-63-2-316-339

Full text: PDF file (297 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.95+517.98

Citation: K. A. Radomirskaya, “Matching spectral and initial-boundary value problems”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, Peoples' Friendship University of Russia, M., 2017, 316–339

Citation in format AMSBIB
\Bibitem{Rad17}
\by K.~A.~Radomirskaya
\paper Matching spectral and initial-boundary value problems
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2017
\vol 63
\issue 2
\pages 316--339
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd322}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-2-316-339}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3717893}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd322
  • http://mi.mathnet.ru/eng/cmfd/v63/i2/p316

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:90
    Full text:33
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020