RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2017, Volume 63, Issue 3, Pages 418–436 (Mi cmfd327)  

Lagrangian representations for linear and nonlinear transport

S. Bianchini, P. Bonicatto, E. Marconi

S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy

Abstract: In this note we present a unifying approach for two classes of first order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.

DOI: https://doi.org/10.22363/2413-3639-2017-63-3-418-436

Full text: PDF file (389 kB)
References: PDF file   HTML file

UDC: 517.952

Citation: S. Bianchini, P. Bonicatto, E. Marconi, “Lagrangian representations for linear and nonlinear transport”, Differential and functional differential equations, CMFD, 63, no. 3, Peoples' Friendship University of Russia, M., 2017, 418–436

Citation in format AMSBIB
\Bibitem{BiaBonMar17}
\by S.~Bianchini, P.~Bonicatto, E.~Marconi
\paper Lagrangian representations for linear and nonlinear transport
\inbook Differential and functional differential equations
\serial CMFD
\yr 2017
\vol 63
\issue 3
\pages 418--436
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd327}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-3-418-436}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd327
  • http://mi.mathnet.ru/eng/cmfd/v63/i3/p418

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:72
    Full text:28
    References:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019