RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2018, Volume 64, Issue 1, Pages 60–73 (Mi cmfd346)  

Investigation of operator models arising in viscoelasticity theory

V. V. Vlasov, N. A. Rautian

Lomonosov Moscow State University, Moscow, Russia

Abstract: We study the correct solvability of initial problems for abstract integrodifferential equations with unbounded operator coefficients in a Hilbert space. We do spectral analysis of operator-functions that are symbols of such equations. The equations under consideration are an abstract form of linear integrodifferential equations with partial derivatives arising in viscoelasticity theory and having a number of other important applications. We describe localization and structure of the spectrum of operatorfunctions that are symbols of such equations.

Funding Agency Grant Number
Russian Science Foundation 17-11-01215


DOI: https://doi.org/10.22363/2413-3639-2018-64-1-60-73

Full text: PDF file (200 kB)
References: PDF file   HTML file

UDC: 517.968.72

Citation: V. V. Vlasov, N. A. Rautian, “Investigation of operator models arising in viscoelasticity theory”, Differential and functional differential equations, CMFD, 64, no. 1, Peoples' Friendship University of Russia, M., 2018, 60–73

Citation in format AMSBIB
\Bibitem{VlaRau18}
\by V.~V.~Vlasov, N.~A.~Rautian
\paper Investigation of operator models arising in viscoelasticity theory
\inbook Differential and functional differential equations
\serial CMFD
\yr 2018
\vol 64
\issue 1
\pages 60--73
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd346}
\crossref{https://doi.org/10.22363/2413-3639-2018-64-1-60-73}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd346
  • http://mi.mathnet.ru/eng/cmfd/v64/i1/p60

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:95
    Full text:48
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019