|
This article is cited in 1 scientific paper (total in 1 paper)
Uniform basis property of the system of root vectors of the Dirac operator
A. M. Savchuk, I. V. Sadovnichaya Lomonosov Moscow State University, Moscow, Russia
Abstract:
We study one-dimensional Dirac operator $\mathcal L$ on the segment $[0,\pi]$ with regular in the sense of Birkhoff boundary conditions $U$ and complex-valued summable potential $P=(p_{ij}(x)),$ $i,j=1,2$. We prove uniform estimates for the Riesz constants of systems of root functions of a strongly regular operator $\mathcal L$ assuming that boundary-value conditions $U$ and the number $\int_0^\pi(p_1(x)-p_4(x)) dx$ are fixed and the potential $P$ takes values from the ball $B(0,R)$ of radius $R$ in the space $L_\varkappa$ for $\varkappa>1$. Moreover, we can choose the system of root functions so that it consists of eigenfunctions of the operator $\mathcal L$ except for a finite number of root vectors that can be uniformly estimated over the ball $\|P\|_\varkappa\le R$.
DOI:
https://doi.org/10.22363/2413-3639-2018-64-1-180-193
Full text:
PDF file (250 kB)
References:
PDF file
HTML file
UDC:
517.984.52
Citation:
A. M. Savchuk, I. V. Sadovnichaya, “Uniform basis property of the system of root vectors of the Dirac operator”, Differential and functional differential equations, CMFD, 64, no. 1, Peoples' Friendship University of Russia, M., 2018, 180–193
Citation in format AMSBIB
\Bibitem{SavSad18}
\by A.~M.~Savchuk, I.~V.~Sadovnichaya
\paper Uniform basis property of the system of root vectors of the Dirac operator
\inbook Differential and functional differential equations
\serial CMFD
\yr 2018
\vol 64
\issue 1
\pages 180--193
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd353}
\crossref{https://doi.org/10.22363/2413-3639-2018-64-1-180-193}
Linking options:
http://mi.mathnet.ru/eng/cmfd353 http://mi.mathnet.ru/eng/cmfd/v64/i1/p180
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. M. Savchuk, I. V. Sadovnichaya, “Spektralnyi analiz odnomernoi sistemy Diraka s summiruemym potentsialom i operatora Shturma—Liuvillya s koeffitsientami-raspredeleniyami”, Spektralnyi analiz, SMFN, 66, no. 3, Rossiiskii universitet druzhby narodov, M., 2020, 373–530
|
Number of views: |
This page: | 142 | Full text: | 53 | References: | 25 |
|