RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Публикационная этика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



СМФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


СМФН, 2018, том 64, выпуск 2, страницы 211–426 (Mi cmfd355)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Метод операторов преобразования и краевые задачи для сингулярных эллиптических уравнений

В. В. Катраховa, С. М. Ситникb

a Воронеж, Владивосток
b Белгородский государственный национальный исследовательский университет ("БелГУ"), Институт инженерных технологий и естественных наук, кафедра дифференциальных уравнений, 308015, г. Белгород, ул. Победы, д. 85

Аннотация: Основное содержание книги составлено из материалов двух докторских диссертаций: В. В. Катрахова 1989 г. и С. М. Ситника 2016 г. В книге впервые в формате монографии систематически изложена теория операторов преобразования и их приложений для дифференциальных уравнений с особенностями в коэффициентах, в том числе содержащих операторы Бесселя. Наряду с детальной обзорной информацией и библиографией по указанной тематике книга содержит оригинальные результаты авторов, существенная часть которых с подробными доказательствами публикуется впервые. В первой главе излагаются исторические сведения, необходимые обозначения, определения и вспомогательные факты. Во второй главе изложена подробная теория операторов преобразования типа Сонина и Пуассона. В третьей главе изложена теория специального важного класса операторов преобразования Бушмана–Эрдейи и их приложения. В четвёртой главе рассматриваются новые весовые краевые задачи с операторами преобразования типа Сонина и Пуассона. В пятой главе рассмотрены приложения операторов преобразования типа Бушмана–Эрдейи специального вида к новым краевым задачам для эллиптических уравнений с существенными особенностями в решениях. В шестой главе излагается универсальный композиционный метод построения операторов преобразования и приведены его приложения. В заключительной седьмой главе изложены приложения теории операторов преобразования к задачам для дифференциальных уравнений с переменными коэффициентами: к задаче о построении нового класса операторов преобразования с точными оценками ядер для возмущённого дифференциального уравнения с оператором Бесселя, а также к специальным случаям известной задачи Е. М. Ландиса об экспоненциальных оценках роста решений для стационарного уравнения Шрёдингера. В заключение книги приведён краткий биографический очерк о Валерии Вячеславовиче Катрахове, а также подробная библиография, содержащая 648 ссылок.

DOI: https://doi.org/10.22363/2413-3639-2018-64-2-211-426

Полный текст: PDF файл (2608 kB)
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
УДК: 517.956.22

Образец цитирования: В. В. Катрахов, С. М. Ситник, “Метод операторов преобразования и краевые задачи для сингулярных эллиптических уравнений”, Сингулярные дифференциальные уравнения, СМФН, 64, № 2, Российский университет дружбы народов, М., 2018, 211–426

Цитирование в формате AMSBIB
\RBibitem{KatSit18}
\by В.~В.~Катрахов, С.~М.~Ситник
\paper Метод операторов преобразования и краевые задачи для сингулярных эллиптических уравнений
\inbook Сингулярные дифференциальные уравнения
\serial СМФН
\yr 2018
\vol 64
\issue 2
\pages 211--426
\publ Российский университет дружбы народов
\publaddr М.
\mathnet{http://mi.mathnet.ru/cmfd355}
\crossref{https://doi.org/10.22363/2413-3639-2018-64-2-211-426}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cmfd355
  • http://mi.mathnet.ru/rus/cmfd/v64/i2/p211

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Ф. Г. Хуштова, “К проблеме единственности решения задачи Коши для уравнения дробной диффузии с оператором Бесселя”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 22:4 (2018), 774–784  mathnet  crossref  elib
  • Современная математика. Фундаментальные направления
    Просмотров:
    Эта страница:115
    Полный текст:46
    Литература:18

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019