RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2019, Volume 65, Issue 4, Pages 683–699 (Mi cmfd396)  

On initial-boundary value problem on semiaxis for generalized Kawahara equation

A. V. Faminskii, E. V. Martynov

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

Abstract: In this paper, we consider initial-boundary value problem on semiaxis for generalized Kawahara equation with higher-order nonlinearity. We obtain the result on existence and uniqueness of the global solution. Also, if the equation contains the absorbing term vanishing at infinity, we prove that the solution decays at large time values.

Funding Agency Grant Number
Russian Foundation for Basic Research 20-01-00536


DOI: https://doi.org/10.22363/2413-3639-2019-65-4-683-699

Full text: PDF file (222 kB)
References: PDF file   HTML file

UDC: 517.958

Citation: A. V. Faminskii, E. V. Martynov, “On initial-boundary value problem on semiaxis for generalized Kawahara equation”, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, CMFD, 65, no. 4, RUDN University, M., 2019, 683–699

Citation in format AMSBIB
\Bibitem{FamMar19}
\by A.~V.~Faminskii, E.~V.~Martynov
\paper On initial-boundary value problem on semiaxis for generalized Kawahara equation
\inbook Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University
\serial CMFD
\yr 2019
\vol 65
\issue 4
\pages 683--699
\publ RUDN University
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd396}
\crossref{https://doi.org/10.22363/2413-3639-2019-65-4-683-699}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd396
  • http://mi.mathnet.ru/eng/cmfd/v65/i4/p683

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:24
    Full text:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020