RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2006, Volume 17, Pages 78–87 (Mi cmfd58)  

Smooth solutions to some differential-difference equations of neutral type

V. B. Cherepennikov, P. G. Ermolaeva

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences

Abstract: The paper is devoted to the scalar linear differential-difference equation of neutral type
$$ dx(t)/dt+p(t)dx(t-1)/dt=a(t)x(t-1)+b(t)x(t)+f(t). $$
We study the existence and methods for finding solutions possessing required smoothness on intervals of length greater than 1.
The following two settings are considered:
(1) To find an initial function $g(t)$ defined on the initial set $t\in[t_0-1,t_4]$ such that the continuous solution $x(t)$, $t>t_0$, generated by $g(t)$ possesses required smoothness at the points divisible by the delay time. For the investigation, we apply the inverse initial-value problem method.
(2) Let $a(t), b(t), p(t),$ and $f(t)$ be polynomials and let the initial value $x(0)=x_0$ be assigned at the initial point $t=0$. Polynomials satisfying the initial-value condition are considered as quasi-solutions to the original equation. After substitution of a polynomial of degree $N$ for $x(t)$ in the original equation, there appears a residual $\Delta(t)=O(t^N)$, for which sharp estimates are obtained by the method of polynomial quasi-solutions. Since polynomial quasi-solutions may contain free parameters, the problem of minimization of the residual on some interval can be considered on the basis of variational criteria.

Full text: PDF file (171 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2008, 149:6, 1648–1657

Bibliographic databases:

UDC: 517.929

Citation: V. B. Cherepennikov, P. G. Ermolaeva, “Smooth solutions to some differential-difference equations of neutral type”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, CMFD, 17, PFUR, M., 2006, 78–87; Journal of Mathematical Sciences, 149:6 (2008), 1648–1657

Citation in format AMSBIB
\Bibitem{CheErm06}
\by V.~B.~Cherepennikov, P.~G.~Ermolaeva
\paper Smooth solutions to some differential-difference equations of neutral type
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~3
\serial CMFD
\yr 2006
\vol 17
\pages 78--87
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd58}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2336460}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 6
\pages 1648--1657
\crossref{https://doi.org/10.1007/s10958-008-0087-z}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40549135938}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd58
  • http://mi.mathnet.ru/eng/cmfd/v17/p78

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:200
    Full text:52
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019