RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Публикационная этика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



СМФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


СМФН, 2006, том 17, страницы 78–87 (Mi cmfd58)  

Гладкие решения некоторых дифференциально-разностных уравнений нейтрального типа

В. Б. Черепенников, П. Г. Ермолаева

Институт динамики систем и теории управления СО РАН

Аннотация: Работа посвящена скалярному линейному дифференциально-разностному уравнению нейтрального типа
$$ dx(t)/dt+p(t)dx(t-1)/dt=a(t)x(t-1)+b(t)x(t)+f(t). $$
Исследуются вопросы существования и методы нахождения таких решений этого уравнения, которые имели бы необходимую гладкость на интервалах больше 1.
Рассматриваются две постановки задачи:
1) Нахождение такой начальной функции $g(t)$, заданной на начальном множестве $t\in[t_0-1,t_0]$, что для $t>t_0$ непрерывное решение $x(t)$, порождаемое $g(t)$, имело бы требуемую гладкость в точках, кратных запаздыванию. В качестве метода исследования применяется метод обратной начальной задачи.
2) Пусть $a(t)$, $b(t)$, $p(t)$ и $f(t)$ — полиномы некоторых степеней и пусть в начальной точке $t=0$ задано начальное значение $x(0)=x_0$. Функции $x(t)$ в виде полиномов различных степеней $N$, удовлетворяющие начальному условию, рассматриваются как квазирешения исходного уравнения. При подстановке функции $x(t)$ в исходное уравнение появляется невязка $\Delta(t)=O(t^N)$, для которой на основе метода полиномиальных квазирешений получены точные оценки. Поскольку полиномиальные квазирешения могут содержать свободные параметры, проблема минимизации невязки на некотором интервале изменения независимой переменной может быть рассмотрена на основе вариационных критериев.

Полный текст: PDF файл (171 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences, 2008, 149:6, 1648–1657

Реферативные базы данных:

УДК: 517.929

Образец цитирования: В. Б. Черепенников, П. Г. Ермолаева, “Гладкие решения некоторых дифференциально-разностных уравнений нейтрального типа”, Труды Четвертой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям (Москва, 14–21 августа, 2005). Часть 3, СМФН, 17, РУДН, М., 2006, 78–87; Journal of Mathematical Sciences, 149:6 (2008), 1648–1657

Цитирование в формате AMSBIB
\RBibitem{CheErm06}
\by В.~Б.~Черепенников, П.~Г.~Ермолаева
\paper Гладкие решения некоторых дифференциально-разностных уравнений нейтрального типа
\inbook Труды Четвертой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям (Москва, 14--21 августа, 2005). Часть~3
\serial СМФН
\yr 2006
\vol 17
\pages 78--87
\publ РУДН
\publaddr М.
\mathnet{http://mi.mathnet.ru/cmfd58}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2336460}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 6
\pages 1648--1657
\crossref{https://doi.org/10.1007/s10958-008-0087-z}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40549135938}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cmfd58
  • http://mi.mathnet.ru/rus/cmfd/v17/p78

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Просмотров:
    Эта страница:220
    Полный текст:63
    Литература:21
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020