RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


CMFD, 2007, Volume 21, Pages 62–76 (Mi cmfd77)  

On parabolic problems with non-Lipschitz nonlinearity

O. È. Zubelevich

Peoples Friendship University of Russia

Abstract: We consider parabolic problems with non-Lipschitz nonlinearities in different scales of Banach spaces and prove local-in-time existence theorems. A new class of parabolic equations that have analytic solutions is obtained.

Full text: PDF file (235 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2008, 153:5, 710–725

Bibliographic databases:

UDC: 517.956.45

Citation: O. È. Zubelevich, “On parabolic problems with non-Lipschitz nonlinearity”, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), CMFD, 21, PFUR, M., 2007, 62–76; Journal of Mathematical Sciences, 153:5 (2008), 710–725

Citation in format AMSBIB
\Bibitem{Zub07}
\by O.~\`E.~Zubelevich
\paper On parabolic problems with non-Lipschitz nonlinearity
\inbook Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A.~L.~Skubachevskii (Peoples' Friendship University of Russia)
\serial CMFD
\yr 2007
\vol 21
\pages 62--76
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd77}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2336491}
\zmath{https://zbmath.org/?q=an:1171.35420}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 153
\issue 5
\pages 710--725
\crossref{https://doi.org/10.1007/s10958-008-9143-y}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249169013}


Linking options:
  • http://mi.mathnet.ru/eng/cmfd77
  • http://mi.mathnet.ru/eng/cmfd/v21/p62

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Современная математика. Фундаментальные направления
    Number of views:
    This page:231
    Full text:98
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020