RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Публикационная этика

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



СМФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


СМФН, 2007, том 21, страницы 87–113 (Mi cmfd79)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

О свойствах решений задачи Коши для вырождающегося вне отрезка уравнения Шредингера и спектральных аспектах регуляризации

В. Ж. Сакбаев

Московский физико-технический институт (государственный университет)

Аннотация: Рассматривается эволюционное уравнение Шредингера с производящим оператором второго порядка на прямой. Исследуется корректная постановка задачи Коши для уравнения Шредингера с вырожденным оператором, характеристическая форма которого обращается в нуль вне некоторого отрезка $I=[-l,l]$ на прямой $\mathbb R$. Определены условия на начальные данные задачи, необходимые и достаточные для существования и единственности ее решения на заданном временном промежутке. Рассматривается также последовательность регуляризованных задач Коши с равномерно эллиптическими операторами и изучаются вопросы о сходимости последовательности решений невырожденных задач к решению вырожденной задачи, а также о сходимости регуляризованных полугрупп преобразований в сильной операторной топологии. Доказана расходимость произвольной последовательности решений регуляризованных задач с начальными данными, не удовлетворяющими условию существования решения. Однако не исключена возможность существования такой подпоследовательности параметров регуляризации, что соответствующая последовательность регуляризованных полугрупп сходится в сильной операторной топологии равномерно на любом отрезке. В работе дано описание множества всех возможных частичных пределов последовательности регуляризованных полугрупп в терминах совокупности самосопряженных расширений вырожденного оператора. Вопрос о достижимости каждого из возможных частичных пределов подпоследовательностью регуляризованных полугрупп остается открытым.
В работе рассматривается также задача Коши для уравнения Шредингера, производящий оператор которого является симметрическим вырождающимся линейным дифференциальным оператором в гильбертовом пространстве $H=L_2(\mathbb R)$. Исследуется вопрос о зависимости поведения последовательности регуляризованных полугрупп от выбора регуляризации производящего оператора. Определена линейная самосопряженная регуляризация задачи Коши с вырожденным оператором как направленное множество корректных задач, аппроксимирующих исходную. В классе линейных самосопряженных регуляризаций вырожденного оператора определено множество правильных регуляризаций, для которых корректность и такие свойства регуляризуемости задачи Коши с вырожденным оператором, как сходимость и слабая сходимость последовательности регуляризованных решений, определяются его индексами дефекта. Получены достаточные и необходимые условия сходимости в сильной и в слабой операторных топологиях последовательности правильно регуляризованных полугрупп.

Полный текст: PDF файл (382 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences, 2008, 153:5, 562–590

Реферативные базы данных:

УДК: 517.946

Образец цитирования: В. Ж. Сакбаев, “О свойствах решений задачи Коши для вырождающегося вне отрезка уравнения Шредингера и спектральных аспектах регуляризации”, Труды семинара по дифференциальным и функционально-дифференциальным уравнениям в РУДН под руководством А. Л. Скубачевского, СМФН, 21, РУДН, М., 2007, 87–113; Journal of Mathematical Sciences, 153:5 (2008), 562–590

Цитирование в формате AMSBIB
\RBibitem{Sak07}
\by В.~Ж.~Сакбаев
\paper О свойствах решений задачи Коши для вырождающегося вне отрезка уравнения Шредингера и спектральных аспектах регуляризации
\inbook Труды семинара по дифференциальным и функционально-дифференциальным уравнениям в РУДН под руководством А.~Л.~Скубачевского
\serial СМФН
\yr 2007
\vol 21
\pages 87--113
\publ РУДН
\publaddr М.
\mathnet{http://mi.mathnet.ru/cmfd79}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2336493}
\zmath{https://zbmath.org/?q=an:1159.35429}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 153
\issue 5
\pages 562--590
\crossref{https://doi.org/10.1007/s10958-008-9137-9}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249147281}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cmfd79
  • http://mi.mathnet.ru/rus/cmfd/v21/p87

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. Ж. Сакбаев, “О спектральных аспектах регуляризации задачи Коши для вырожденного уравнения”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 261, МАИК «Наука/Интерпериодика», М., 2008, 258–267  mathnet  mathscinet  zmath  elib; V. Zh. Sakbaev, “Spectral Aspects of Regularization of the Cauchy Problem for a Degenerate Equation”, Proc. Steklov Inst. Math., 261 (2008), 253–261  crossref  isi  elib
    2. В. Ж. Сакбаев, “Задача Коши для линейного дифференциального уравнения с вырождением и усреднение аппроксимирующих ее регуляризаций”, Уравнения в частных производных, СМФН, 43, РУДН, М., 2012, 3–172  mathnet  mathscinet; V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, Journal of Mathematical Sciences, 213:3 (2016), 287–459  crossref
  • Современная математика. Фундаментальные направления
    Просмотров:
    Эта страница:363
    Полный текст:67
    Литература:32

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019