Communications in Mathematical Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Comm. Math. Phys., 2021, Volume 382, Pages 951–1014 (Mi cmph13)  

Formal expansions in stochastic model for wave turbulence 1: kinetic limit

Andrey Dymovab, Sergei Kuksincd

a Steklov Mathematical Institute of RAS, Moscow, Russia 119991
b National Research University Higher School of Economics, Moscow, Russia 119048
c UFR de Mathématiques - Batiment Sophie Germain, Université Paris-Diderot (Paris 7), 5 rue Thomas Mann, 75205 Paris, France
d School of Mathematics, Shandong University, Jinan, People's Republic of China

Funding Agency Grant Number
Ministry of Science and Higher Education of the Russian Federation MK1999.2021.1.1
Russian Foundation for Basic Research 18-31-20031
Agence Nationale de la Recherche 17-CE40-0006
AD was supported by the Grant of the President of the Russian Federation (Project MK1999.2021.1.1) and by the Russian Foundation for Basic Research (Project 18-31-20031), and SK -byAgence Nationale de la Recherche through the grant 17-CE40-0006. We thank Johannes Sjostrand for discussion and an anonymous referee for careful reading of the paper and pointing out some flaws.


DOI: https://doi.org/10.1007/s00220-021-03955-w


Bibliographic databases:

ArXiv: 1907.04531
Received: 21.10.2019
Accepted:12.01.2021
Language:

Linking options:
  • http://mi.mathnet.ru/eng/cmph13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:30

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021