RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Компьютерная оптика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Компьютерная оптика, 2018, том 42, выпуск 1, страницы 149–158 (Mi co489)  

ЧИСЛЕННЫЕ МЕТОДЫ И АНАЛИЗ ДАННЫХ

Тригонометрическая система функций в проекционных оценках плотности вероятности нейросетевых признаков изображений

А. В. Савченко

Национальный исследовательский университет «Высшая школа экономики», Нижний Новгород, Россия

Аннотация: Исследована задача распознавания изображений, которые описываются векторами признаков высокой размерности, выделенными с помощью глубокой свёрточной нейронной сети и анализа главных компонент. Рассмотрена проблема высокой вычислительной сложностистатистического подхода с непараметрическими оценками плотности вероятности векторов признаков, реализованного в вероятностной нейронной сети. Предложен новый метод статистической классификации на основе проекционных оценок плотности распределения с тригонометрической системой ортогональных функций. Показано, что такой подход позволяет преодолеть недостатки вероятностной нейронной сети, связанные с необходимостью обработки всех признаков всех эталонных изображений. В рамках экспериментального исследования для наборов изображений Caltech-101 и CASIA WebFaces показано, что предлагаемый подход позволяет на 1-5% снизить вероятность ошибки распознавания и в 1,5-6 раз повысить вычислительную эффективность по сравнению с исходной вероятностной нейронной сетью для малых выборок эталонных изображений.

Ключевые слова: статистическое распознавание образов, обработка изображений, глубокие свёрточные нейронные сети, вероятностная нейронная сеть, проекционные оценки, распознавание лиц.

Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации МД-306.2017
Российский научный фонд 14-41-00039
Исследование выполнено при поддержке гранта президента РФ для молодых ученых – докторов наук № МД-306.2017 и Лаборатории алгоритмов и технологий анализа сетевых структур (ЛАТАС) Национального исследовательского университета Высшая школа экономики. Работа параграфов 3 и 4 выполнена за счёт гранта Российского научного фонда (проект № 14-41-00039).


DOI: https://doi.org/10.18287/2412-6179-2018-42-1-149-158

Полный текст: PDF файл (277 kB)
Полный текст: http://www.computeroptics.smr.ru/.../420118.html
Список литературы: PDF файл   HTML файл

Тип публикации: Статья
Поступила в редакцию: 01.12.2017
Принята в печать:19.01.2018

Образец цитирования: А. В. Савченко, “Тригонометрическая система функций в проекционных оценках плотности вероятности нейросетевых признаков изображений”, Компьютерная оптика, 42:1 (2018), 149–158

Цитирование в формате AMSBIB
\RBibitem{Sav18}
\by А.~В.~Савченко
\paper Тригонометрическая система функций в проекционных оценках плотности вероятности нейросетевых признаков изображений
\jour Компьютерная оптика
\yr 2018
\vol 42
\issue 1
\pages 149--158
\mathnet{http://mi.mathnet.ru/co489}
\crossref{https://doi.org/10.18287/2412-6179-2018-42-1-149-158}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/co489
  • http://mi.mathnet.ru/rus/co/v42/i1/p149

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Компьютерная оптика
    Просмотров:
    Эта страница:122
    Полный текст:40
    Литература:15
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020