RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Contemp. Math., 2012, том 566, страницы 99–118 (Mi conm3)  

Combinatorial cubic surfaces and reconstruction theorems

Yu. I. Manin

Max Planck Institute for Mathematics

Аннотация: This note contains a solution to the following problem: reconstruct the definition field and the equation of a projective cubic surface, using only combinatorial information about the set of its rational points. This information is encoded in two relations: collinearity and coplanarity of certain subsets of points. We solve this problem, assuming mild "general position" properties. This study is motivated by an attempt to address the Mordell-Weil problem for cubic surfaces using essentially model theoretic methods. However, the language of model theory is not used explicitly.

DOI: https://doi.org/10.1090/conm/566/11217


Реферативные базы данных:

Тип публикации: Статья
Язык публикации: английский

Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/conm3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:8

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019