RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Contemp. Math., 2012, том 578, страницы 195–239 (Mi conm5)  

Orthogonal polynomials and $S$-curves

E. A. Rakhmanov

Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA

Аннотация: This paper is devoted to a study of $S$-curves, that is systems of curves in the complex plane whose equilibrium potential in a harmonic external field satisfies a special symmetry property ($S$-property).
Such curves have many applications. In particular, they play a fundamental role in the theory of complex (non-hermitian) orthogonal polynomials. One of the main theorems on zero distribution of such polynomials asserts that the limit zero distribution is presented by an equilibrium measure of an $S$-curve associated with the problem if such a curve exists. These curves are also the starting point of the matrix Riemann–Hilbert approach to strong asymptotics. Other approaches to the problem of strong asymptotics (differential equations, Riemann surfaces) are also related to $S$-curves or may be interpreted this way.
Existence problem $S$-curve in a given class of curves in presence of a nontrivial external field presents certain challenge. We formulate and prove a version of existence theorem for the case when both the set of singularities of the external field and the set of fixed points of a class of curves are small (in main case — finite). We also discuss various applications and connections of the theorem.

DOI: https://doi.org/10.1090/conm/578/11484


Реферативные базы данных:

Тип публикации: Статья
Язык публикации: английский

Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/conm5

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:3

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019