RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2011, Volume 3, Issue 3, Pages 279–286 (Mi crm667)  

This article is cited in 3 scientific papers (total in 3 papers)

NUMERICAL METHODS AND THE BASIS FOR THEIR APPLICATION

Efficient method of the transport equation calculation in 2D cylindrical and 3D hexagonal geometries for quasi-diffusion method

E. N. Aristovaab, D. F. Baydina

a Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141700, Russia
b Keldysh Institute of Applied Mathematics, Miusskaya sq. 4, Moscow, 125047, Russia

Abstract: Efficient method for numerical solving of the steady transport equation in x-y-z-geometry has been suggested. The equation is being solved on hexagonal mesh, reflecting real structure of the reactor active zone cross-section. Method of characteristics is used, that inherits all the outcomes from the two-dimensional r-z-geometry calculation. Two variants of the method of characteristics have been applied for solving the transport equation in a cell: method of short characteristics and its conservative modification. It has been confirmed that in three-dimensional geometry conservative method has advantage over pure characteristic and it produces highly accurate solution, especially for quasi-diffusion tensor components.

Keywords: transport equation, quasi-diffusion method, conservative methods.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00389


DOI: https://doi.org/10.20537/2076-7633-2011-3-3-279-286

Full text: PDF file (556 kB)
Full text: http://crm.ics.org.ru/.../1808
References: PDF file   HTML file

UDC: 519.63
Received: 31.05.2011

Citation: E. N. Aristova, D. F. Baydin, “Efficient method of the transport equation calculation in 2D cylindrical and 3D hexagonal geometries for quasi-diffusion method”, Computer Research and Modeling, 3:3 (2011), 279–286

Citation in format AMSBIB
\Bibitem{AriBay11}
\by E.~N.~Aristova, D.~F.~Baydin
\paper Efficient method of the transport equation calculation in 2D cylindrical and 3D hexagonal geometries for quasi-diffusion method
\jour Computer Research and Modeling
\yr 2011
\vol 3
\issue 3
\pages 279--286
\mathnet{http://mi.mathnet.ru/crm667}
\crossref{https://doi.org/10.20537/2076-7633-2011-3-3-279-286}


Linking options:
  • http://mi.mathnet.ru/eng/crm667
  • http://mi.mathnet.ru/eng/crm/v3/i3/p279

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. N. Aristova, D. F. Baydin, “Quasidiffusion method realization for fast reactor critical parameters calculation in 3D hexagonal geometry”, Math. Models Comput. Simul., 5:2 (2013), 145–155  mathnet  crossref  mathscinet  elib
    2. I. V. Matyushkin, “Kletochno-avtomatnye metody resheniya klassicheskikh zadach matematicheskoi fiziki na geksagonalnoi setke. Chast 1”, Kompyuternye issledovaniya i modelirovanie, 9:2 (2017), 167–186  mathnet  crossref
    3. G. O. Astafurov, D. A. Manichkin, “Postroenie kubaturnykh formul na sfere, soglasovannykh s pravilnoi geksagonalnoi reshetkoi”, Preprinty IPM im. M. V. Keldysha, 2019, 151, 16 pp.  mathnet  crossref
  • Computer Research and Modeling
    Number of views:
    This page:25
    Full text:12
    References:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021