RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., Ser. 1, 2003, Volume 10, Number 3, Pages 3–11 (Mi da134)  

This article is cited in 13 scientific papers (total in 13 papers)

Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles

V. A. Aksenov, O. V. Borodin, A. N. Glebov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Full text: PDF file (240 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.17
Received: 11.04.2003

Citation: V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003), 3–11

Citation in format AMSBIB
\Bibitem{AksBorGle03}
\by V.~A.~Aksenov, O.~V.~Borodin, A.~N.~Glebov
\paper Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles
\jour Diskretn. Anal. Issled. Oper., Ser.~1
\yr 2003
\vol 10
\issue 3
\pages 3--11
\mathnet{http://mi.mathnet.ru/da134}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2020829}
\zmath{https://zbmath.org/?q=an:1047.05014}


Linking options:
  • http://mi.mathnet.ru/eng/da134
  • http://mi.mathnet.ru/eng/da/v10/s1/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Prodolzhenie $3$-raskraski s $7$-grani na ploskii graf bez $3$-tsiklov”, Sib. elektron. matem. izv., 1 (2004), 117–128  mathnet  mathscinet  zmath
    2. Borodin O.V., Glebov A.N., Montassier M., Raspaud A., “Planar graphs without 5-and 7-cycles and without adjacent triangles are 3-colorable”, Journal of Combinatorial Theory Series B, 99:4 (2009), 668–673  crossref  mathscinet  zmath  isi  scopus
    3. Borodin O.V., Glebov A.N., Raspaud A., “Planar graphs without triangles adjacent to cycles of length from 4 to 7 are 3-colorable”, Discrete Math, 310:20 (2010), 2584–2594  crossref  mathscinet  zmath  isi  elib  scopus
    4. Borodin O.V., Montassier M., Raspaud A., “Planar graphs without adjacent cycles of length at most seven are 3-colorable”, Discrete Math, 310:1 (2010), 167–173  crossref  mathscinet  zmath  isi  elib  scopus
    5. Borodin O.V., Glebov A.N., “Planar Graphs with Neither 5-Cycles Nor Close 3-Cycles Are 3-Colorable”, J Graph Theory, 66:1 (2011), 1–31  crossref  mathscinet  zmath  isi  elib  scopus
    6. Yang Ch.-Y., Zhu X., “Cycle Adjacency of Planar Graphs and 3-Colourability”, Taiwanese J Math, 15:4 (2011), 1575–1580  crossref  mathscinet  zmath  isi  elib
    7. Borodin O.V. Glebov A.N. Jensen T.R., “A Step Towards the Strong Version of Havel's Three Color Conjecture”, J. Comb. Theory Ser. B, 102:6 (2012), 1295–1320  crossref  mathscinet  zmath  isi  elib  scopus
    8. Liu R., Li X., Yu G., “a Relaxation of the Bordeaux Conjecture”, Eur. J. Comb., 49 (2015), 240–249  crossref  mathscinet  zmath  isi  elib  scopus
    9. Choi I., Ekstein J., Holub P., Lidicky B., “3-Coloring Triangle-Free Planar Graphs With a Precolored 9-Cycle”, Combinatorial Algorithms, Iwoca 2014, Lecture Notes in Computer Science, 8986, eds. Kratochvil J., Miller M., Froncek D., Springer-Verlag Berlin, 2015, 98–109  crossref  mathscinet  zmath  isi  scopus
    10. Wang Y., Xu J., “Decomposing a Planar Graph Without Cycles of Length 5 Into a Matching and a 3-Colorable Graph”, Eur. J. Comb., 43 (2015), 98–123  crossref  mathscinet  zmath  isi  elib  scopus
    11. Liu R., Li X., Yu G., “Planar Graphs Without 5-Cycles and Intersecting Triangles Are (1,1,0)-Colorable”, Discrete Math., 339:2 (2016), 992–1003  crossref  mathscinet  zmath  isi  elib  scopus
    12. Huang Z., Li X., Yu G., “A Relaxation of the Strong Bordeaux Conjecture”, J. Graph Theory, 88:2 (2018), 237–254  crossref  mathscinet  zmath  isi  scopus
    13. Choi I. Ekstein J. Holu P. Lidicky B., “3-Coloring Triangle-Free Planar Graphs With a Precolored 9-Cycle”, Eur. J. Comb., 68 (2018), 38–65  crossref  mathscinet  zmath  isi  scopus
  • Дискретный анализ и исследование операций
    Number of views:
    This page:273
    Full text:76
    References:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020