RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., Ser. 1, 2003, Volume 10, Number 2, Pages 17–55 (Mi da156)  

This article is cited in 8 scientific papers (total in 8 papers)

Extreme points of the Weber polytope

V. A. Vasil'ev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Full text: PDF file (1811 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.865
Received: 30.01.2003

Citation: V. A. Vasil'ev, “Extreme points of the Weber polytope”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:2 (2003), 17–55

Citation in format AMSBIB
\Bibitem{Vas03}
\by V.~A.~Vasil'ev
\paper Extreme points of the Weber polytope
\jour Diskretn. Anal. Issled. Oper., Ser.~1
\yr 2003
\vol 10
\issue 2
\pages 17--55
\mathnet{http://mi.mathnet.ru/da156}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2001801}
\zmath{https://zbmath.org/?q=an:1060.91020}


Linking options:
  • http://mi.mathnet.ru/eng/da156
  • http://mi.mathnet.ru/eng/da/v10/s1/i2/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Derks J., “A new proof for Weber's characterization of the random order values”, Math Social Sci, 49:3 (2005), 327–334  crossref  mathscinet  zmath  isi  scopus
    2. Derks J., van der Laan G., Vasil'ev V., “Characterizations of the random order values by Harsanyi payoff vectors”, Math Methods Oper Res, 64:1 (2006), 155–163  crossref  mathscinet  zmath  isi  elib  scopus
    3. van den Brink R., van der Laan G., Vasil'ev V., “Component efficient solutions in line-graph games with applications”, Economic Theory, 33:2 (2007), 349–364  crossref  mathscinet  zmath  isi  scopus
    4. van den Brink R., van der Laan G., Pruzhansky V., “Harsanyi power solutions for graph-restricted games”, International Journal of Game Theory, 40:1 (2011), 87–110  crossref  mathscinet  zmath  isi  scopus
    5. Algaba E., Bilbao J.M., van den Brink R., “Harsanyi Power Solutions For Games on Union Stable Systems”, Ann. Oper. Res., 225:1 (2015), 27–44  crossref  mathscinet  zmath  isi  scopus
    6. A. B. Zinchenko, “Polytopes of special classes of balanced games with transferable utility”, J. Appl. Industr. Math., 10:1 (2016), 145–154  mathnet  crossref  crossref  mathscinet  elib
    7. Dehez P., “On Harsanyi Dividends and Asymmetric Values”, Int. Game Theory Rev., 19:3 (2017), 1750012  crossref  mathscinet  zmath  isi  scopus
    8. Zou Zh., Zhang Q., “Harsanyi Power Solution For Games With Restricted Cooperation”, J. Comb. Optim., 35:1 (2018), 26–47  crossref  mathscinet  zmath  isi  scopus
  • Дискретный анализ и исследование операций
    Number of views:
    This page:391
    Full text:77
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019