RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., Ser. 2, 2001, Volume 8, Number 1, Pages 70–87 (Mi da239)  

This article is cited in 1 scientific paper (total in 1 paper)

The problem of locating rectangular plants with minimal cost for the connecting network

A. V. Panyukov

South Ural State University

Abstract: We present a method for the hierarchical decomposition of the problem of locating rectangular plants with minimal cost for their connecting network into an optimal ordering problem (the upper level) and two problems of the construction of an optimal flow (the lower level). We obtain the following results: (1) we find necessary and sufficient conditions for the local extremum and give an algorithm for constructing locally optimal solutions; (2) for large-scale problems, we present a solution algorithm based on random search, heuristics, and the decomposition method proposed; (3) for the search for the global extremum, we present an algorithm that is based on the branch and bound method.

Full text: PDF file (1828 kB)

Bibliographic databases:
UDC: 519.854.2
Received: 26.06.2000
Revised: 22.11.2000

Citation: A. V. Panyukov, “The problem of locating rectangular plants with minimal cost for the connecting network”, Diskretn. Anal. Issled. Oper., Ser. 2, 8:1 (2001), 70–87

Citation in format AMSBIB
\Bibitem{Pan01}
\by A.~V.~Panyukov
\paper The problem of locating rectangular plants with minimal cost for the connecting network
\jour Diskretn. Anal. Issled. Oper., Ser.~2
\yr 2001
\vol 8
\issue 1
\pages 70--87
\mathnet{http://mi.mathnet.ru/da239}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1858423}
\zmath{https://zbmath.org/?q=an:1075.90509}


Linking options:
  • http://mi.mathnet.ru/eng/da239
  • http://mi.mathnet.ru/eng/da/v8/s2/i1/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Zabudsky, N. S. Veremchuk, “An algorithm for approximate solution to the Weber problem on a line with forbidden gaps”, J. Appl. Industr. Math., 10:1 (2016), 136–144  mathnet  crossref  crossref  mathscinet  elib
  • Дискретный анализ и исследование операций
    Number of views:
    This page:721
    Full text:262

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020