RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2009, Volume 16, Number 2, Pages 21–41 (Mi da566)  

This article is cited in 12 scientific papers (total in 12 papers)

A branch and bound method for the facility location problem with customer preferences

I. L. Vasiliev, K. B. Klimentova

Institute of System Dynamics and Control Theory SB RAS, Irkutsk, Russia

Abstract: The article is focused on computational study of the bilevel facility location problem with customer's preferences taken into account. Different integer linear programming formulations are considered. The cutting plane method is implemented for the new family of valid inequalities which are based on relation with the problem for a pair of matrices. The optimal solution of the problem is searched by two variants of branch and bound method using the cutting plane method implemented. The upper bounds for these exact methods are found by Simulated Annealing method. The computational experience illustrates the effectiveness of the proposed methods in comparison with the known approaches. Pic. 1, tabl. 7, bibl. 15.

Keywords: bilevel facility location problem, cutting plane method, local search, branch and bound method.

Full text: PDF file (835 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2010, 4:3, 441–454

Bibliographic databases:

UDC: 519.854.2
Received: 07.11.2008
Revised: 04.02.2009

Citation: I. L. Vasiliev, K. B. Klimentova, “A branch and bound method for the facility location problem with customer preferences”, Diskretn. Anal. Issled. Oper., 16:2 (2009), 21–41; J. Appl. Industr. Math., 4:3 (2010), 441–454

Citation in format AMSBIB
\Bibitem{VasKli09}
\by I.~L.~Vasiliev, K.~B.~Klimentova
\paper A branch and bound method for the facility location problem with customer preferences
\jour Diskretn. Anal. Issled. Oper.
\yr 2009
\vol 16
\issue 2
\pages 21--41
\mathnet{http://mi.mathnet.ru/da566}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2574307}
\zmath{https://zbmath.org/?q=an:1249.90080}
\transl
\jour J. Appl. Industr. Math.
\yr 2010
\vol 4
\issue 3
\pages 441--454
\crossref{https://doi.org/10.1134/S1990478910030178}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956112361}


Linking options:
  • http://mi.mathnet.ru/eng/da566
  • http://mi.mathnet.ru/eng/da/v16/i2/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gruzdeva T.V., Klimentova K.B., “Metod otsechenii dlya neravenstv klik v zadache razmescheniya s predpochteniyami klientov”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2011, no. 4, 31–39  elib
    2. Vasilyev I., Klimentova X., Boccia M., “Polyhedral Study of Simple Plant Location Problem with Order”, Oper. Res. Lett., 41:2 (2013), 153–158  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. L. Beresnev, A. A. Melnikov, “Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers”, J. Appl. Industr. Math., 8:2 (2014), 177–189  mathnet  crossref  mathscinet
    4. A. A. Mel'nikov, “Computational complexity of the discrete competitive facility location problem”, J. Appl. Industr. Math., 8:4 (2014), 557–567  mathnet  crossref  mathscinet
    5. Camacho-Vallejo J.-F., Eduardo Cordero-Franco A., Gonzalez-Ramirez R.G., “Solving the Bilevel Facility Location Problem Under Preferences by a Stackelberg-Evolutionary Algorithm”, Math. Probl. Eng., 2014, 430243  crossref  mathscinet  isi  elib  scopus
    6. Camacho-Vallejo J.-F., Mar-Ortiz J., Lopez-Ramos F., Pedraza Rodriguez R., “a Genetic Algorithm For the Bi-Level Topological Design of Local Area Networks”, PLoS One, 10:6 (2015), e0128067  crossref  isi  elib  scopus
    7. Moatari-Kazerouni A., Chinniah Yu., Agard B., “Integrating Occupational Health and Safety in Facility Layout Planning, Part i: Methodology”, Int. J. Prod. Res., 53:11 (2015), 3243–3259  crossref  isi  elib  scopus
    8. Kalashnikov V.V., Dempe S., Perez-Valdes G.A., Kalashnykova N.I., Camacho-Vallejo J.-F., “Bilevel Programming and Applications”, Math. Probl. Eng., 2015, 310301  crossref  mathscinet  zmath  isi  scopus
    9. I. L. Vasilyev, P. Avella, M. Boccia, “A branch and cut heuristic for a runway scheduling problem”, Autom. Remote Control, 77:11 (2016), 1985–1993  mathnet  crossref  isi  elib  elib
    10. Casas-Ramirez M.-S., Camacho-Vallejo J.-F., “Solving the P-Median Bilevel Problem With Order Through a Hybrid Heuristic”, Appl. Soft. Comput., 60 (2017), 73–86  crossref  isi  scopus
    11. Diaz J.A., Luna D.E., Camacho-Vallejo J.-F., Casas-Ramirez M.-S., “Grasp and Hybrid Grasp Tabu Heuristics to Solve a Maximal Covering Location Problem With Customer Preference Ordering”, Expert Syst. Appl., 82 (2017), 67–76  crossref  isi  scopus
    12. Casas-Ramirez M.-S., Camacho-Vallejo J.-F., Martinez-Salazar I.-A., “Approximating Solutions to a Bilevel Capacitated Facility Location Problem With Customer'S Patronization Toward a List of Preferences”, Appl. Math. Comput., 319 (2018), 369–386  crossref  mathscinet  isi  scopus
  • Дискретный анализ и исследование операций
    Number of views:
    This page:845
    Full text:228
    References:55
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020