RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretn. Anal. Issled. Oper., 2009, Volume 16, Number 5, Pages 41–51 (Mi da586)  

This article is cited in 8 scientific papers (total in 8 papers)

Continued sets of boundary classes of graphs for colorability problems

D. S. Malyshev

Nizhny Novgorod State University, N. Novgorod, Russia

Abstract: We point out continued sets of boundary classes of graphs for the 3-vertex-colorability problem and for the 3-edge-colorability problem. These are the first examples of graph problems with sets of boundary classes of such cardinality. Bibl. 9.

Keywords: boundary classes of graphs, 3-colorability problems, continued sets of boundary classes.

Full text: PDF file (257 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.178
Received: 21.01.2009
Revised: 27.06.2009

Citation: D. S. Malyshev, “Continued sets of boundary classes of graphs for colorability problems”, Diskretn. Anal. Issled. Oper., 16:5 (2009), 41–51

Citation in format AMSBIB
\Bibitem{Mal09}
\by D.~S.~Malyshev
\paper Continued sets of boundary classes of graphs for colorability problems
\jour Diskretn. Anal. Issled. Oper.
\yr 2009
\vol 16
\issue 5
\pages 41--51
\mathnet{http://mi.mathnet.ru/da586}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2590754}
\zmath{https://zbmath.org/?q=an:1249.05130}


Linking options:
  • http://mi.mathnet.ru/eng/da586
  • http://mi.mathnet.ru/eng/da/v16/i5/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Korpelainen N., Lozin V.V., Malyshev D.S., Tiskin A., “Boundary properties of graphs for algorithmic graph problems”, Theoret. Comput. Sci., 412:29 (2011), 3545–3554  crossref  mathscinet  zmath  isi  elib  scopus
    2. D. S. Malyshev, “On intersection and symmetric difference of families of boundary classes in the problems on colouring and on the chromatic number”, Discrete Math. Appl., 21:5-6 (2011), 645–649  mathnet  crossref  crossref  mathscinet  elib
    3. D. S. Malyshev, “Study of boundary graph classes for colorability problems”, J. Appl. Industr. Math., 7:2 (2013), 221–228  mathnet  crossref  mathscinet
    4. Malyshev D.S., “Boundary Graph Classes for Some Maximum Induced Subgraph Problems”, J. Comb. Optim., 27:2 (2014), 345–354  crossref  mathscinet  zmath  isi  elib  scopus
    5. D. S. Malyshev, “The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. elektron. matem. izv., 11 (2014), 811–822  mathnet
    6. D. S. Malyshev, “Critical elements in combinatorially closed families of graph classes”, J. Appl. Industr. Math., 11:1 (2017), 99–106  mathnet  crossref  crossref  mathscinet  elib
    7. Malyshev D.S., Lobanova O.O., “Two Complexity Results For the Vertex Coloring Problem”, Discrete Appl. Math., 219 (2017), 158–166  crossref  mathscinet  zmath  isi  scopus
    8. Lozin V.V., Malyshev D.S., “Vertex Coloring of Graphs With Few Obstructions”, Discrete Appl. Math., 216:1, SI (2017), 273–280  crossref  mathscinet  zmath  isi  scopus
  • Дискретный анализ и исследование операций
    Number of views:
    This page:458
    Full text:83
    References:31
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020